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Abstract—Automatic human affect recognition is a key step towards more natural human-computer interaction. Recent trends include
recognition in the wild using a fusion of audiovisual and physiological sensors, a challenging setting for conventional machine learning
algorithms. Since 2010, novel deep learning algorithms have been applied increasingly in this field. In this paper, we review the
literature on human affect recognition between 2010 and 2017, with a special focus on approaches using deep neural networks. By
classifying a total of 950 studies according to their usage of shallow or deep architectures, we are able to show a trend towards deep
learning. Reviewing a subset of 233 studies that employ deep neural networks, we comprehensively quantify their applications in this
field. We find that deep learning is used for learning of (i) spatial feature representations, (ii) temporal feature representations, and (iii)
joint feature representations for multimodal sensor data. Exemplary state-of-the-art architectures illustrate the progress. Our findings
show the role deep architectures will play in human affect recognition, and can serve as a reference point for researchers working on
related applications.

Index Terms—Affect recognition, Deep learning, Emotion recognition, Human-computer interaction.
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1 INTRODUCTION

HUMAN-COMPUTER INTERACTION (HCI) is seeing a
gradual shift from the computer-centered approach

of the past to a more user-centered approach. Commercial
success has made user-friendly input methods, portable
devices and multi-sensor availability a new standard in per-
sonal computing. Despite the progress, it has been argued
that HCI is still lacking a central element of human-human
interaction: The communication of information through af-
fective display [1]. The term affective computing was coined
by Rosalind Picard in 1995 [2], inspired by findings from
neuroscience, psychology, and cognitive science highlight-
ing the important role affect plays in intelligent behavior. It
encompasses efforts to (i) automatically recognize human
affect, and (ii) generate corresponding responses by the
computer, providing a richer context for HCI outcomes.
Applications range from education [3] and health care [4]
to entertainment [5] and embodied agents [6].

In human interactions, a significant amount of informa-
tion is not communicated explicitly, but through the way
we speak, our facial expressions, gestures, and other means.
Initial research on affect recognition1 focused mainly on
unimodal approaches, with facial expression recognition
(FER) and speech emotion recognition (SER) gaining most
attention and highest accuracies [7]. Psychophysiological
measures were also shown to contain information about af-
fective states [8]. Public database availability has improved
since the 2000s [9] and multimodal sensor combination was
found to improve recognition accuracy and robustness [10].
As good performance was achieved on posed databases,
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1. Unless stated otherwise, in this article we use the term affect

recognition to refer to human affect recognition.

the focus started to shift towards more realistic, sponta-
neous displays of affective behavior [11]. These trends are
exemplified in the annual competitions Emotion Recognition
in the Wild (EmotiW) [12] and Audio Video Emotion Chal-
lenge (AVEC) [13]. Since 2010, deep learning methods have
been applied to affect recognition problems across multiple
modalities and led to improvements in accuracy, including
winning performances at EmotiW [14], [15], [16] and AVEC
[17], [18], [19].

In this paper, we review the state of research on af-
fect recognition using deep learning. We start by giving
an introduction to deep learning, the reasoning behind its
application in artificial intelligence (AI), and to the most
relevant architectures. We then break down the challenges
faced in affect recognition research, and outline why models
incorporating deep learning are useful in meeting these.
Finally, we go on to discuss the directions research has
taken since 2010 and in what way deep learning methods
are utilized. Our contributions to the field are:

• By conducting a comprehensive literature search,
and classification of a total of 950 studies, we are able
to identify and measure a trend towards use of deep
neural networks for affect recognition;

• reviewing 233 studies that employ deep learning,
we identify the main application areas as being
the learning of (i) spatial feature representations, (ii)
temporal feature representations, and (iii) joint feature
representations for multimodal sensor data;

• we discuss and give exemplary illustrations of how
deep neural networks are applied on visual, auditory,
and physiological sensor data;

• we provide an overview of the most relevant
databases by quantifying their use across 233 studies,
including large databases established since 2016; and

• we discuss open issues and research directions.
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2 DEEP LEARNING FOR AFFECT RECOGNITION

Automatic affect recognition relies on abilities commonly
expected of AI, such as visual and auditory perception [20].
A class of methods known as machine learning has turned out
to be effective in handling the desired perception tasks. By
enabling computers to learn directly from examples, these
algorithms overcome the need to provide an explicit model.

Although perception tasks such as visual and auditory
affect recognition seem intuitive to humans, some charac-
teristics rooted in their real-world origin make them hard
problems to solve: They require understanding of problems
characterized by highly varying functions in terms of the
input; another common characteristic is the high dimension-
ality of examples in the form of images and audio files.

In this context, a common challenge for traditional ma-
chine learning approaches is the curse of dimensionality, a
phenomenon where the higher the number of dimensions
used to represent the data, the less effective conventional
computational and statistical methods become [21]. With a
very high number of dimensions, it becomes increasingly
difficult to comprehensively sample all possible combina-
tions, resulting in vast unexplored regions in the feature
space. To circumvent this problem, a straightforward and
widely used solution is to project the high-dimensional data
into a lower-dimensional space through approaches such
as feature selection. Machine learning algorithms with so-
called shallow architectures, such as kernel methods and
single-layer neural networks, can then be efficiently applied
for modeling purposes. However, when considering com-
putational and statistical efficiency as well as human in-
volvement, it has been suggested that shallow architectures
may not be the most efficient way to approach challenging
learning problems such as affect recognition [20]. Hence, in
2010 researchers have started to explore the application of
deep architectures for affect recognition.

2.1 Deep learning
To distinguish between shallow and deep machine learning
models, one can think of their architectures as subsequent
layers of hierarchical computation. We will use the notion
of architecture depth to denote the number of computational
layers in an architecture2. Traditional learning algorithms
can generally be represented as two layers of computation,
where the first layer consists of template matchers or simple
trainable basis functions, and the second layer is a weighted
sum [20]. This is why we talk of them as shallow architec-
tures, when comparing them with deep neural networks,
which consist of three or more layers. Although there is
no universally agreed upon rule to determine depth or
distinguish between shallow and deep architectures [22,
ch.1], a cutoff of three or more layers is commonly used
[23], [24], [25].

2.1.1 Deep neural networks
The design of deep neural networks (DNNs) is loosely
inspired by biological neural networks. A typical example is
the deep feedforward network (or multi-layer perceptron).
It consists of multiple layers of processing units (“neurons”):

2. This excludes the input layer, which lacks learnable parameters.

An input layer, multiple hidden layers, and an output layer.
Units in adjacent layers can have weighted connections.
We speak of fully-connected DNNs if there are connections
between all pairs of units in adjacent layers. Information
in the network flows forward through these connections,
each unit computing its activation as a function of its in-
puts. Units in hidden layers introduce a nonlinearity in the
process. By adjusting the connection weights, a DNN can
effectively learn a feature representation of its input data in
each layer’s unit activations. A well-trained DNN learns a
deep hierarchy of distributed representations3. This enables the
network to learn very expressive representations capturing
a large number of possible input configurations [26].

Some of the key advantages of deep architectures are de-
rived from their depth. Increasing depth promotes re-use of
learned features [27]. On a related note, the deep hierarchy
of feature representations allows learning at different levels
of abstraction building on top of each other. Here, higher
levels of abstraction are generally associated with invariance
to local changes of the input [27].

While the theoretical advantages of such deep architec-
tures were known for some time, progress was held back by
the difficulty of training them [25]. An initial breakthrough
in 2006 [23] showed that the so-called vanishing gradient
problem in training DNNs can be overcome by unsupervised
pre-training. Multiple strategies of alleviating the problem
are known today, including (i) architectures unaffected by it
[28], [29], (ii) improved optimizers [30], (iii) certain training
and design choices [31], [32], [33], and (iv) use of powerful
computing systems, especially GPU-based. Three interre-
lated factors drive the continued success of DNNs:

• Increased learning capacity4. A central theme in the
evolution of deep models has been a link between
better generalization ability and increased number of
parameters, especially when growing models deeper
rather than wider [22, ch.6.4]. This applies as long as
training is feasible and the dataset is large enough to
take advantage of the architecture [29].

• Growing computing power. Training of state-of-the-art
deep learning models is an intense task involving
millions of parameters to optimize. GPUs are partic-
ularly well suited for the operations involved, and
specialized software is available. See the supplemen-
tal material (Section S4) for further information.

• Large datasets. Part of the promise of deep learning is
to take advantage of large datasets with millions of
examples. An investigation into the effect of dataset
size suggests a logarithmic relationship between per-
formance on vision tasks and training data size [34].

When dealing with data that are known to have a certain
structure (e.g., spatial structure, temporal structure), DNNs
can be modified to create more specialized architectures that
take advantage of said structures. In the following, we pro-
vide a brief overview of such specialized DNN architectures.

3. This implies a many-to-many relationship between learned con-
cepts and units representing them.

4. Due to the complexity of deep learning algorithms, it is difficult
to explicitly determine their learning capacity [22, ch.5.2], but it can be
thought of as being related to the number of parameters and layers [34].
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2.1.2 Learning spatially: Convolutional neural networks
Sensor recordings of natural scenes often inherently contain
a spatial structure along some dimensions. Convolutional
neural networks (CNNs) introduce layers with specialized
operations into DNNs, which take into account the spatial
structure of the data to make the network more efficient.

The convolutional layer consists of several learnable
kernels, which are convolved with the layer input to pro-
duce activations. In terms of the layer’s units, this can be
interpreted as parameter sharing between units, since the
same kernel is applied over different spatial locations. The
kernel’s receptive field is typically much smaller than the
input, which leads to sparse connectivity between units of
adjacent layers [22, ch.9.2]. In contrast to the fully-connected
equivalent, this means that convolutional layers only es-
tablish connections between units that are spatially close,
which dramatically reduces the number of parameters. Since
CNNs are inspired by the mammalian visual cortex [35],
we primarily see 2D convolutions applied to image data.
However, it is possible to apply convolutions along any
dimension of the input data, including 1D (e.g., audio data)
and 3D convolutions (e.g., video data).

After the convolution operation, a nonlinearity is ap-
plied, typically the rectified linear unit [31]. Pooling layers
between convolutional layers facilitate nonlinear downsam-
pling of layer activations, and make the network invariant
to translations in the input [22, ch.9.3]. Invariances to other
transformations such as rotation or scaling are not directly
implied by the architecture, but can be learned in convolu-
tional layers. Finally, it is common to add one or two fully-
connected layers after several alternating convolutional and
pooling layers (e.g., [36]).

Compared to fully-connected DNNs, training CNNs is
less difficult due to the reduced number of parameters.
They were trained successfully in the 1990s [37], while
fully-connected DNNs were still believed to be too diffi-
cult to train [25]. Since a record-breaking performance [36]
at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [38] in 2012, CNNs have attracted much attention
from researchers and the mainstream media.

2.1.3 Learning from sequences: Recurrent neural networks
When learning from sequential data (e.g., audio, video), the
goal is to capture temporal dynamics in an efficient way that
allows generalization to sequences of arbitrary length. This
can be accomplished by sharing parameters across time,
instead of re-learning them for every step. As mentioned
previously, CNNs can accomplish parameter sharing in a
shallow way, by applying the same kernel at different points
in time. Recurrent neural networks (RNNs), on the other
hand, introduce recurrent connections in time, allowing
parameters to be shared in a deeper way [22, ch.10].

A basic RNN extends the feedforward architecture by
allowing recurrent connections to exist within layers. Sim-
ply put, the previous model state can be regarded as an
additional input at each temporal step, which allows the
RNN to form a memory in its hidden state over information
from all previous inputs [39]. RNNs have a representational
advantage over hidden Markov models (HMMs), whose
discrete hidden states limit their memory [40]. Even RNNs

with a single hidden layer can be considered as very deep
networks, which becomes clear when we imagine “un-
rolling” them along the time dimension. It turns out that
this depth makes training RNNs considerably more difficult,
as gradients tend to vanish or explode during training—
especially when processing long sequences.

To deal with this problem, multiple specialized RNN ar-
chitectures with gated units have been proposed. Long short-
term memory (LSTM) RNNs [28] are successful at learning
long-term dependencies by providing gate mechanisms to
add and forget information selectively. Gated recurrent units
(GRUs) are a gating mechanism proposed more recently in
the context of sequence-to-sequence processing [41]. RNNs,
especially LSTMs, have had a profound impact on how
sequences of data are processed [24]. They are incorporated
in state-of-the-art AI systems, for example in automatic
speech recognition (ASR) [42].

2.1.4 Unsupervised learning models
To learn useful feature representations from data, the most
common approach today is supervised learning: Researchers
provide the learning algorithm with clues on how to im-
prove parameters, typically in the form of corresponding
data labels and a loss function measuring how “bad” a
representation is. Taking a classification task for example,
a useful representation would be one that makes the classes
of interest linearly separable. However, labeling data is
expensive and large unlabeled datasets are easier to come
by. Unsupervised learning algorithms attempt to learn useful
representations without being given explicit clues such as
data labels—instead, a form of regularization is introduced.

An autoencoder (AE) [43] is a neural network that learns
two functions, f : x 7! z and g : z 7! x, to restore its input
x from an intermediate representation z. The idea of the AE
is to avoid identity mapping between f and g, either by
forcing z to be of lower dimensionality than x in basic AEs,
or by other forms of regularization, such as restoring x from
a corrupted version x̃ of itself in denoising AEs. When mul-
tiple layers are between input or output and intermediate
representation in an AE, we speak of stacked autoencoders
(SAEs). Restricted Boltzmann machines (RBMs) [44] are
undirected probabilistic models that learn a representation
of their input in a layer of latent units. Deep Boltzmann
machines (DBMs) [45] consist of several layers of latent units
with undirected connections. A deep belief network (DBN)
[23] on the other hand consists of several layers of directed
connections, with an RBM as its final layer.

In practical applications, the lines between supervised
and unsupervised learning are often blurred [22, p.105]. Un-
supervised pre-training is a technique whereby single-layer
unsupervised models, such as RBMs, are iteratively trained
and stacked into a deep model [23]. Both supervised and
unsupervised models can benefit from the learned hierarchy
of feature representations: By adding a classification layer
and supervised fine-tuning, it was found that difficulties
in training fully-connected DNNs could be overcome [46].
This technique was responsible for the resurgence of deep
learning since 2006, but has later gone out of fashion as it
is no longer required for training fully-connected DNNs.
Another use is found in initializing deep unsupervised
models, such as DBNs and DBMs.
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2.2 The notion of affect in affect recognition

The notions of affect and emotion5 are subjective in nature.
As a result, the question of how affective states should be
represented is still an unsolved issue with no consensus
reached in the literature. Two differing views are dominant:
The categorical view of affect as discrete states, and the
dimensional view of affect where states are represented in a
continuous-valued space. Both categorical and dimensional
models are also used to decode the nature of human emo-
tion in specific brain regions (e.g., amygdala, insula), which
is subject to an ongoing debate in affective neuroscience (see
[48] for a review). Affective computing has largely stayed
agnostic on the debate regarding the appropriateness of
these views [9]. In practice, the type of affect labels avail-
able in databases is often chosen to most naturally fit the
available sensor data—categorical if images or sequences are
to be matched with a single affective state, and dimensional
for continuous affect prediction (see Section 3.4).

The notion of categorical affective states originated in
Charles Darwin’s research on the evolution of affect, and
remains much discussed in the literature [49]. Most cate-
gorical models assume the existence of basic affective states
as building blocks of more complex ones [49]. In practice,
Ekman’s basic affective states derived from facial expres-
sions [50] are most commonly used in the context of affect
recognition; they comprise anger, happiness, surprise, disgust,
sadness, and fear. Others include Plutchik’s wheel of emo-
tions [51], and the basic model [52]. In application-driven
efforts, non-basic affective states are more commonly used,
where specific user states and the intensity thereof are of
interest—such as boredom or frustration in HCI [9], [11]. This
approach sidesteps issues of theoretical validity to instead
focus directly on the relevant non-basic affective states.

Dimensional models aim to avoid the restrictiveness of
discrete states, and allow more flexible definition of affective
states as points in a multi-dimensional space spanned by
concepts such as affect intensity and positivity. This ad-
dresses the notion that discrete categories may not fully
reflect the complexity of affective states and the associated
problems in labeling and evaluating affective displays (e.g.,
labeler agreement) [11], [9], [53]. For affect recognition, the
dimensional space is commonly operationalized as a regres-
sion task (e.g., for arousal [54], [18]) or as a classification task
where the continuous space is discretized (e.g., for different
levels of arousal, [55], [56]). Mappings can be established
between dimensional and categorical models of affect (e.g.,
[57]). The most commonly used example is Russell’s cir-
cumplex model [58], which consists of the two dimensions
valence and arousal, sometimes extended by dominance and
likability.

2.3 Frontiers in affect recognition

Research on affect recognition has seen considerable
progress as the focus has shifted from the study of lab-based,
acted databases to real-life scenarios since the 2000s [11]. In
the 2010s, the focus has remained on such conditions, as
research is exploring more complex models to better take

5. The terms affect and emotion are widely used synonymously in the
context of affective computing [47].

advantage of available sensor data. The annual competi-
tions AVEC and EmotiW have been established to focus
on multimodal affect recognition, encouraging researchers
to benchmark model accuracy in a fair manner. Multiple
factors make building such models challenging:

• Natural settings. Data collected in uncontrolled real-
life settings can introduce many additional sources
of variation that need to be accounted for. Visually,
these include occlusions, complex illumination con-
ditions in different settings, spontaneous behavior
and poses, as well as rigid movements. Audio may
contain background noise, unclear speech, interrup-
tions, and other artifacts.

• Temporal dynamics. The temporal dimension is an
integral element of affective display that has not yet
been fully embraced by research on affect recogni-
tion, especially FER. Temporal dynamics can be rich
with contextual information that could be captured
by models, e.g., to distinguish between displays that
are similar in the short term, and to assess the relative
importance of specific segments [7].

• Multimodal sensor fusion. Humans rely on multiple
modalities when expressing and sensing affective
states in social interactions. It seems natural that
computers could benefit from the same variety of
sensors [47]. In fact, there has been an increased inter-
est to design such multimodal systems [59], and it is
generally accepted that audiovisual sensor fusion can
increase model robustness and accuracy. However,
without knowledge of how exactly humans handle
this problem, it is unclear how and at which level of
abstraction the modalities need to be fused.

• Limited availability of labeled data. The increase of
factors that make learning difficult—such as model
size and the nature of ambitious affect recognition
tasks—has outpaced the increase in availability of
labeled examples. It is a challenging task to suc-
cessfully train large DNNs with relatively few la-
beled data. Advanced regularization methods are
necessary to avoid problems like overfitting. Transfer
learning [60] attempts to transfer knowledge be-
tween emotion corpora and other domains such as
object recognition. Furthermore, unsupervised and
semi-supervised learning are being explored to ac-
cess knowledge encoded in unlabeled datasets.

2.4 Towards learning deep models of affect
While traditional human affect recognition systems follow
standard machine learning approaches, it seems intuitive
that these algorithms may benefit from being more reminis-
cent of how the human brain works. Leading researchers in
affective computing have supported this notion in the past,
voicing the expectation that biologically inspired systems
could be more suitable for affect recognition than human-
engineered systems [1], [47].

In light of the challenges discussed in Section 2.3, current
affect recognition tasks combine several characteristics of
difficult perception problems in AI. The variation in the
sensor data is dominated by factors mostly unrelated to
the task, (i) spatially (e.g., in image data and short-term
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audio segments), (ii) temporally (e.g., in image sequences
and long-term audio), and (iii) distributed across modalities
on different time scales. In order to perform the desired
classification and regression tasks in affect recognition, it is
necessary to obtain useful feature representations from the
available multimodal high-dimensional sensor data. These
feature representations should disentangle the underlying
factors of variation in order to isolate the factors that distin-
guish affective displays [61].

Previous approaches rely on cleverly handcrafted fea-
tures and shallow learning models to derive such feature
representations. Unfortunately, the steps involved in de-
signing handcrafted features can be work-intensive and
error-prone. Motivated by the success of deep learning in
other AI-relevant tasks based on images and speech [24],
researchers have started to use deep models for representa-
tion learning in affect recognition. As discussed in Section
2.1, DNNs are more efficient at learning and representing
the given functions, both statistically and regarding human
involvement [20]. Labeled data and computation time are
limited and costly, incentivizing the adoption of such mod-
els in affect recognition. Based on the previous discussion of
challenges and model types, we identify three distinct ways
in which deep learning is leveraged to learn useful feature
representations for affect recognition tasks:

• Learning spatial feature representations. For images [61],
short-term6 image sequences [62] and audio seg-
ments [54], DNNs and especially CNNs are used to
learn spatial feature representations.

• Learning temporal feature representations. To learn rep-
resentations of the temporal dynamics found in au-
dio [63], sequences of images [64], and physiological
measurements [55], DNNs and especially RNNs are
successfully applied.

• Learning joint feature representations for multimodal
data. In multimodal approaches, DNNs are lever-
aged to learn joint feature representations from mul-
tiple unimodal feature representations to accomplish
feature-level fusion [65].

After learning such feature representations, the derived
features (or deep features) can be used as input for simple
classification and regression methods, such as logistic re-
gression and support vector regression (SVR). In Section
3, we give an in-depth breakdown of how deep learning
models for human affect recognition are applied in practice.

3 THE STATE OF THE ART

Since around 2010, deep learning methods have started to
fulfill crucial roles in human affect recognition systems.
Indeed, it is safe to state that they are currently driving
most state-of-the-art results in this field. Our goals are to
(i) measure the adoption of deep learning in the field, and
(ii) break down what specific functions are being fulfilled by
DNNs in human affect recognition systems.

Because of these goals, we conducted a two-stage liter-
ature search7 of studies on human affect recognition since

6. For this study, we consider segments of up to 1 s as short-term.
7. Databases searched: The ACM Digital Library, IEEE Xplore,

SpringerLink, and Web of Science.
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Fig. 1. Stage 1: Number of studies on affect recognition published by
year, distinguished by their use of deep or shallow learning models.

2010. This search is restricted to studies that use sensor
data of cues directly given by the human body8, i.e., facial
expressions, movements, speech, and physiology. Further
affect recognition fields that focus on affect communicated
through means other than the human body—such as generic
images and videos [66], music [67], [68], and text [69]—are
out of the scope of this review. See [70], [7], and [11] for
earlier reviews on human affect recognition.

Stage 1 of our search yielded a total of 950 studies.
Following the terminology introduced in Section 2.1, these
studies were then manually classified to indicate the use of
shallow or deep models. Considering the temporal distribu-
tion of the studies, Fig. 1 illustrates two developments:

• Between 2010 and 20169, there was an overall in-
crease in the number of studies on human affect
recognition (25% year-on-year increase on average).

• Deep learning has gained considerable attention in
this field since 2010: Up from one to two studies per
year, it is being employed in 52% of studies in 2017—
a 119% average year-on-year increase in the number
of published studies.

In Stage 2, we focus exclusively on the 233 studies found
in our review that use deep learning for affect recognition.
They form the basis for the review in this section. These
studies were further classified by (i) the usage of deep
learning according to the three ways introduced in Section
2.4, and (ii) the modality used as a basis for recognizing
affect. Table 1 lays out the result of these classifications by
listing the numbers of studies falling into each category.
Note that individual studies often use multiple modalities
or apply deep learning in more than one way.

From Table 1, it is apparent that the application of DNNs
for FER has attracted the most attention in the literature,
featured in almost twice as many studies compared to
SER, which is featured second most frequently. Considering
physiological signals, DNNs are most frequently applied in
studies based on electroencephalography (EEG).

In the central part of Table 1, we can see that learning
feature representations of spatial information is the most

8. Since we only look at recognition of affective states, facial action
unit detection and facial feature point detection are excluded. For SER,
we restrict the scope to paralinguistic content, which is the main focus
of research during the time frame covered by our review.

9. The search only contains partial data for 2017, hence 2017 is
excluded here.
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TABLE 1
Number of identified studies on human affect recognition by modality, and applications of deep learning.

Modality Learning deep feature representations Totala

Spatial (Section 3.1) Temporala (Section 3.2) Joint (Section 3.3)

Visual Facial expression 141 36 19 158
Body movement - 4 2 4

Auditory Speech 35 64 17 82

Physiological
EEG 4 17 3 18
Peripheral - 6 4 7
Other - 2 3 3

Totala 173 105 21 233
a Totals may not equal row/column sums due to overlaps between modalities and approaches.

common application of DNNs in human affect recognition
to date, especially in FER. For SER in particular, learning
of temporal feature representations with DNNs is an active
research area. A less active, but developing application
area of DNNs in human affect recognition is learning joint
feature representations for the purpose of early feature fusion
across different modalities.

3.1 Learning spatial feature representations

The goal in spatial feature learning is to learn expressive fea-
ture representations of data with spatial structure. In prac-
tice, we find that deep architectures are frequently applied
to exploit this characteristic in sensor recordings containing
static and short-term cues of affective behavior—both visual
imagery and short segments of audio and physiological data
can be interpreted in this way. Some approaches combine
handcrafted features with deep architectures such as fully-
connected DNNs (see Fig. 2, S1a–S1b). As discussed in
Section 2.1.2, the design of CNNs is based around the prior
of spatial coherence. Hence, CNNs are the most popular
approach for learning spatial features (see Fig. 2, S2a–S2e).

3.1.1 Learning spatial features for FER (S1a, S2a, S2b)
Mehrabian [71] famously posited that 55% of the emotion
conveyed in a message is perceived visually. Indeed, FER
is most prominently featured in our search results on spa-
tial feature learning, as Table 1 reveals. Detailed surveys
are available [72], [73], giving an overview of the field in
general. In this section, we discuss the application of deep
learning across 141 studies to learn spatial features from
images. We distinguish between approaches using fully-
connected DNNs (Fig. 2, S1a), and CNNs (Fig. 2, S2a–S2b).

Conventional approaches rely on handcrafted features
to represent faces by their shape or appearance. Shape repre-
sentations use explicit knowledge about facial geometry to
encode a given expression, such as the location of certain fa-
cial feature points. The most common appearance features,
such as local binary patterns (LBP), local phase quantization
(LPQ), and histogram of oriented gradients (HoG), encode
low-level texture information in local histograms. Other
methods of feature extraction include convolving the input
with handcrafted Gabor filters and scale-invariant feature
transform (SIFT). As Sariyanidi et al. [72] pointed out, such
handcrafted features focus on low-level description of edge
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Fig. 2. Applications of deep learning for spatial feature learning with fully-
connected DNNs (S1a–S1b) and CNNs (S2a–S2e).

distributions. While they provide robustness against illumi-
nation variations, they are less suitable for discrimination
between high-level concepts such as facial features. On the
contrary, CNNs natively learn a hierarchy of features that
builds from low-level to high-level representations. While
the first layer learns general concepts similar to Gabor filters,
the last layers learn more specific concepts that tend to
be semantically interpretable. As a result, 93% of studies
reporting direct comparisons find that deep spatial features
outperform handcrafted spatial features for FER.

Learning spatial features from intermediate handcrafted fea-
tures (S1a in Fig. 2). As evident from Table 2, especially
during the initial adoption of DNNs in FER, handcrafted
features and DNNs were combined in a sequential way. In
the first step, this approach extracts low-level handcrafted
features from pixel values. Appearance features such as LBP
(e.g., [74], [75]) and Gabor features (e.g., [76], [77]) are pre-
ferred for this approach. Due to the reduced dimensionality,
it is then feasible to apply fully-connected DBNs (e.g., [76])
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TABLE 2
Learning spatial feature representations: Number of studies adopting

different approaches over time.

Year FC DNN 1D/2D/3D CNN

S1a S1b S2a S2b S2c S2d S2e

2012 - - 1 - - - -
2013 - 1 1 - - - -
2014 3 1 4 - 1 - -
2015 3 - 24 2 2 - -
2016 2 2 42 - 5 3 3
2017 3 2 57 9 11 9 1

Total 11 6 129 11 19 12 4

and SAEs (e.g., [77], [78]) for unsupervised learning of high-
level features.

Learning spatial features directly from 2D image with CNNs
(S2a in Fig. 2). CNNs are well suited to learn spatial features
directly from image pixels. As becomes clear from Tables
1 and 2, this approach dominates our search results. Due
to a lack of understanding why deep learning works well
in practice [79], and limited availability of labeled data, the
challenge faced by researchers is choosing an appropriate
architecture. Fig. 3 provides an overview of typical choices
regarding the number of fully-connected and convolutional
layers, and indicates whether transfer learning was used.
We can distinguish between two approaches: Region I in
the left of Fig. 3 refers to architectures totalling six or
less convolutional and fully-connected layers. These CNN
architectures, which are specifically designed for FER, make
up 56% of the studies. Most of these studies rely on smaller
model sizes instead of transfer learning to avoid overfitting
the relatively small number of examples.

Region II consists of architectures with more convolu-
tional layers, and hence potential to learn more expressive
features. Many of these are existing architectures that have
proven successful for other tasks such as object recognition.
Most frequently chosen are VGG Net [80] (23 studies) and
AlexNet [36] (18 studies). AlexNet is the architecture that
won the 2012 ILSVRC [38]. It consists of five convolutional
and three fully-connected layers, with a total of 60 million
parameters. VGG Net, an entry at the 2014 ILSVRC, is
a deeper CNN coming in variants of 16 and 19 layers.
Other choices include GoogLeNet [81] (winner of ILSVRC
2014), ResNet [29] (winner of ILSVRC 2015), and Tang’s
winning entry at ICML 2013’s FER challenge [82]. Most of
these studies use additional datasets and transfer learning
to avoid overfitting.

Learning short-term spatial features from image sequences
with 3D CNNs (S2b in Fig. 2). Building on the concept of
spatial representation for a single 2D image, this approach
interprets an image sequence as a spatio-temporal volume.
Standard CNNs can be extended to accept 3D volumes as
input by increasing filter dimensionality to support spatio-
temporal convolutions. Such 3D CNN architectures [83] are
theoretically capable of learning spatio-temporal features
such as motion of facial action units. Since the number of
model parameters and therefore the number of required
examples increase with temporal depth of input sequences,
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the chosen number of frames is typically quite low10, and 3D
CNNs are limited to short-term sequences (up to 1 s). The
nature of this approach also requires that input sequences
consist of a standardized number of frames. This means that
researchers need to downsample or interpolate videos [62].

Group-level FER. Group-level affect recognition is a sub-
discipline of FER, where the goal is to assess the overall
expression of all persons in an image. It has been featured
in the EmotiW competition in 2016 [12] and 2017 [86]. For
this purpose, spatial features are typically extracted for
each person, and fused in some way—e.g., by considering
multiple faces as a sequence and applying an LSTM [15].

Complementarity of deep and handcrafted spatial features. In
benchmarking experiments across various datasets, many
studies found that features extracted with CNNs lead to
higher recognition accuracies than handcrafted features
(e.g., [87], [88], [89], [90], [91], [64], [92], [93], [94]). However,
several challenge-winning studies [95], [15], [17], choose
to use both handcrafted and deep features, e.g., by score-
level [95] or model-level [17] fusion of separate handcrafted
and deep models. This suggests that deep and handcrafted
features are complementary. As of this writing, the find-
ings of most studies doing related comparisons support
this assumption [96], [97], [98], [99], though in many cases
a comparison is difficult as reported accuracies for well-
performing fusion approaches include features from other
modalities (see Section 3.3). Only one study reported that
deep and handcrafted features are not complementary [100].

Pre-processing to simplify the FER learning task. Instead
of learning from unprocessed images, the majority of the
reviewed studies apply some form of pre-processing to
image data. These steps reduce the amount of variation the
model has to account for, and thus simplify the learning
task. Face cropping is standard practice, and reported to
increase model accuracy (e.g., from 54% to 72% in [94]; see
also [15]). This involves the detection of the face and feature
points, although some databases come with pre-detected or
cropped faces (e.g., [101], [102], [103]). Spatial normalization
techniques include face alignment and face frontalization:
Simple adjustment of face rotation and facial feature point
alignment is reported to improve model accuracy (e.g., from
54% to 62% in [94]; see also [15], [99]). More advanced face
frontalization involving the approximation of 3D shape is
useful when dealing with 3D head pose variation [104],
[105]. Intensity normalization, on the other hand, aims to

10. The reviewed studies used between 3 [84] and 16 [85] frames.
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normalize illumination related factors such as brightness
and contrast, which can be an issue with images taken in
the wild or across multiple databases. Researchers report
improvements in accuracy by applying intensity normaliza-
tion (e.g., from 54% to 57% in [94]; see also [98]).

Limited availability of labeled data. Since the number of
labeled examples for FER remains relatively limited, large11

models are likely to overfit the data [106], [107], [89],
[108]. Several techniques are available to address this prob-
lem: (i) transfer learning, (ii) data augmentation, and (iii)
architecture- and training choices promoting regularization,
such as dropout. In transfer learning, the goal is to use ad-
ditional corpora to learn generic visual descriptors that are
found to be effective in improving initial model parameters
[109], and thus reduce overfitting. Especially when adopting
large models originally intended for object recognition, it
is common to pre-train on a large-scale database such as
ImageNet [110] (14M annotated images). Another database
frequently chosen for pre-training is VGG-Face [111] (2.6M
face images). Smaller, more relevant databases such as
FER2013 [103] and CK+ [112] are also frequently used for
pre-training. To make use of generic visual features, authors
acquire large models pre-trained for object classification,
”freeze” the lower-level layers, and fine-tune a selection of
higher-level layers for affect recognition. Improvements in
accuracy are reported when following this approach (e.g.,
from 39% to 42% in [89]; see also [99], [92]).

Data augmentation is a technique whereby existing im-
ages or sequences are manipulated to reduce overfitting.
Researchers either use static rules to generate new ex-
amples for the same original label, or manipulate images
randomly before training. Such manipulations include hor-
izontal flipping, cropping, rotation, translations, changes to
color, brightness, and saturation, as well as scaling. This
way, researchers artificially increase the number of available
examples or training epochs by a factor typically between
10 and 30 [88], [113], [114], and up to 300 [115]. Studies
running experiments on this technique report accuracy im-
provements (e.g., from 79% to 89% in [87]; see also [74],
[94]). Dropout [116] is a technique that reduces overfitting
by randomly dropping out neurons during training, thus
forcing the network to learn redundantly. It is widely used
in the reviewed studies—57% report using dropout for fully-
connected layers, and 12% report using it for convolutional
layers. Khorrami et al. [87] reported an increase in accuracy
of 2.5% after applying dropout to fully-connected layers.

3.1.2 Learning spatial features for SER (S1b, S2c, S2d)
Beyond spoken words, the acoustic properties of human
speech are rich with information about the speaker, such as
gender, age, and affect (see [117], [118] for comprehensive
reviews). In this section, we focus on the 35 studies that em-
ploy deep learning for spatial feature learning in SER. The
potential of replacing or complementing traditional short-
term descriptors with DNNs in speech related classification
tasks was pointed out as early as 2009 [119]. Especially
CNNs are found useful in modeling speech features [120].

11. When using CNNs for FER, researchers tend to resort to methods
like transfer learning in Region II, see Fig. 3. Note however that the
number of trainable parameters can be subject to many other factors.

We distinguish between approaches using fully-connected
DNNs (see Fig. 2, S1b) and CNNs (see Fig. 2, S2c–S2d).

Research has shown that short-term spectral, prosodic,
and energy features of speech carry affective information
[121]. In conventional SER approaches, it is common prac-
tice to capture such properties using handcrafted features
known as low-level descriptors (LLDs). LLDs are sampled
from small overlapping audio segments or frames; a com-
mon choice is a window size of 25 ms and a step size of 10
ms [122]. Most recent models use pre-defined sets of LLDs
for spatial modeling. Standard sets such as eGeMAPS [121]
and ComParE [123] typically include cepstral descriptors
such as Mel-frequency cepstral coefficients (MFCCs), energy-
related descriptors such as shimmer and loudness, frequency-
related descriptors such as pitch and jitter, and spectral
parameters. They can be extracted with software tools
such as openSMILE [124] and openEAR [122]. This review
highlights how DNNs are used in the state of the art to
complement and replace handcrafted LLDs. Overall, 90% of
studies reporting direct comparisons find that deep spatial
features outperform handcrafted spatial features for SER.

Learning spatial features from handcrafted feature represen-
tations of speech (S1b in Fig. 2). A limited number of early
applications in SER were combinations of DNNs with hand-
crafted LLDs. The idea was to use fully-connected DNNs to
replace Gaussian Mixture Models (GMMs), which occupied
the role of short-term modeling in the commonly used
GMM-HMM architecture from ASR. For example, Li et al.
[125] used a six-layer DNN to learn frame-level features
from concatenated MFCCs of a sliding context window. In
their experiments, this yielded an accuracy improvement of
more than 10% over GMMs.

Learning spatial features from raw spectral representations of
speech with CNNs (S2c in Fig. 2). Many recent studies in SER
leverage DNNs to avoid the step of handcrafted feature
engineering (see Table 2). Mirsamadi et al. [63] pointed
out that most commonly used frame-level LLDs in SER
can be derived from spectral representations of the raw
speech signal. Without any feature engineering, they were
able to learn features similar to LLDs from the raw spectral
representation of individual audio frames at 25 ms, leading
to an accuracy increase of 4%. Such learned features can be
shown to have similarities to handcrafted LLDs [54].

Spectrogram representations are computed using mul-
tiple frames and allow speech segments to be interpreted
as 2D images. They can be based on Fourier transform of
the raw waveform (e.g., [126], [127]) or minimally hand-
engineered on the log Mel-frequency cepstrum representa-
tion (e.g., [85], [128]), which closer matches the character-
istics of human auditory perception. CNNs can be applied
to directly learn features from such representations, which
are typically between 250 ms and 1 s in length. Since the
suggested minimum time required to identify affect from
speech is quoted in the literature as 250 ms [129], [85], the
resulting features can directly be used for classification of
short utterances (e.g., [126], [130]), or be regarded as short-
term features (e.g., [85], [131]) for further temporal modeling
as discussed in Section 3.2.3.

Most studies chose custom architectures of one to three
convolutional layers and one to three fully-connected layers
for this task. Some considered using known architectures
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from object recognition [132], [85], [127]. Here, the authors
regarded it as necessary to pre-train these larger models on
the ImageNet database to avoid overfitting the relatively
few labeled examples.

Learning spatial features from the raw waveform with CNNs
(S2d in Fig. 2). Feature learning directly from the raw wave-
form was proposed in 2011 [133]. Since 2016 (see Table
2), a number of studies have started applying this idea in
SER. CNNs can be applied to raw 1D audio (see Section
2.1.2); indeed, all except one study in our review use CNNs
for this task. Trigeorgis et al. [54] were the first to do so:
They used two convolutional layers for spatial modeling,
almost doubling ground truth correlation over LLDs for
arousal, and slightly improving for valence. Bertero et al.
[134] proposed one convolutional layer with 25 ms kernels,
which achieved a 3% accuracy improvement over LLDs.

Limited availability of labeled data. To avoid overfitting,
both dropout [116] and batch normalization [33] can help
to achieve better regularization. Dropout is applied in fully-
connected (reported in 43% of studies, e.g., [135]) and convo-
lutional layers (14% of studies, e.g., [108]). Multiple studies
have shown that transfer learning can improve model accu-
racy by leveraging additional sources of related knowledge
(e.g., from other paralinguistic tasks [136], various standard
databases [137], and different affect representations [135]).
SoundNet [138], a 1D CNN trained with unlabeled video,
has been shown to perform well in SER even without
fine-tuning [139], and was featured in a challenge-winning
submission [17]. Semi-supervised learning can give access
to knowledge contained in unlabeled datasets [140]. Knowl-
edge transfer from domains like music [141] and visual
object recognition [132], [85] is also possible. Data augmen-
tation to artificially increase the dataset size is used less
often than for FER; notable examples include the addition of
Gaussian noise [129], different sampling frequencies [130],
and modified playback speed [142].

3.1.3 Learning spatial features from physiology (S2e)
As early as 2001, physiological responses were shown to
convey information about affective states in machine learn-
ing [8]. Candidates include measures of the peripheral phys-
iology via electrocardiography (ECG), electrodermal activity
(EDA), and brain activity via EEG. However, affective com-
puting research initially focused mostly on FER and SER,
partially due to a lack of interest and inconvenient sensors
[7]. More recently, interest in physiological affect recognition
is seeing a resurgence [143], owed in part to the capabilities
of modern, portable monitoring devices [144].

As part of our review, we identified only four studies
using 2D CNNs to learn spatial features from EEG data (see
S2e in Fig. 2). All achieved accuracy improvements over
handcrafted approaches, but a lack of training data was
also mentioned [145], [146]. For example, Yanagimoto and
Sugimoto [145] divided the raw 16-channel EEG data into 1s
segments and used a seven-layer CNN with 10 ms kernels
on the first layer, leading to accuracy improvements of over
20%. Similar to some work in SER, Li et al. [55] considered a
spectrogram representation of the EEG signal at a frame size
of 1s. Another way to learn spatial features from the EEG
signal is to reflect it as a 2D map representing the location
of the electrodes on the head [147].
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Fig. 4. Number of hidden layers used for spatial feature learning in FER.

3.1.4 Takeaways for spatial feature learning
• Deep spatial features lead to higher accuracies than

handcrafted spatial features. Out of 103 studies that
reported comparisons, 93% support this finding.

• However, in contrast to fields such as object- and
speech recognition, both are often found to be com-
plementary in affect recognition as of this writing.
This suggests that the full potential of deep learning
in affect recognition may not have been seen yet.

• CNNs are the most widely used architecture for
spatial feature learning (91% of the studies in our
review; see Table 2). Instead of using spectrogram
representations, recent research starts to apply CNNs
directly to raw speech and physiological data.

• To achieve higher accuracy, research strives towards
“deeper” models (Fig. 4 illustrates this for FER), but
runs into the problem of overfitting. This is the main
challenge for current research.

3.2 Learning temporal feature representations
When learning from sequences, the goal is to learn feature
representations that capture temporal dynamics [40]. This
allows models to consider the temporal variation of spatial
characteristics in sensor data (e.g., in SER [118] and video-
based FER [106]). As discussed in Section 2.1, both CNNs
and RNNs provide architectures that can learn represen-
tations of sequences of data. We found that the existing
architectures—spanning all studies and modalities—can be
classified into one of three approaches illustrated in Fig.
5: (T1) fully-connected DNNs for learning spatio-temporal
features from aggregated frame-level spatial features, (T2)
RNNs for global temporal modeling based on frame-level
spatial features, and (T3) CNNs for local temporal modeling.

3.2.1 Learning temporal features for FER
A straightforward approach to derive sequence-level fea-
tures from video data is to first extract high-level spatial
features (such as facial characteristics, see Fig. 7) from
individual frames, and then aggregate these in some way.
This can be achieved by simple feature pooling strategies
such as mean pooling, max pooling, or feature concate-
nation. However, such strategies typically ignore most of
the temporal variation in the sequence, which may contain
valuable contextual information. Well-designed models seek
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TABLE 3
Learning temporal feature representations: Number of studies adopting

different approaches over time.

Year FC DNN (T1)a RNN (T2)a CNN (T3)a

V A P V A P V A P

2010 - - - - 1 - - - -
2011 - 1 - 1 1 - - - -
2012 - - - 1 1 - - - -
2013 - - - - - - - - 1
2014 - 2 2 2 3 1 - - -
2015 2 3 2 1 - - 1 1 -
2016 3 10 4 10 5 2 - 5 2
2017 1 11 6 15 13 1 3 12 1

Total 6 27 14 30 24 4 4 18 4
a Modalities: V = Visual (FER, Body), A = Audio (SER), P = Physio
(EEG, Peripheral, Other).

to further exploit such information. To some extent, this
is possible with common handcrafted features: Appearance
features can be extended for spatio-temporal representation
by considering a third orthogonal plane [96], [99]. With
DNNs, temporal modeling capabilities in FER can further

be improved: 94% of studies reporting comparisons with
handcrafted approaches find that deep temporal features
perform better for FER.

Learning spatio-temporal features from aggregated frame-level
spatial features (T1 in Fig. 5). In some cases, fully-connected
DNNs are applied to achieve dimensionality reduction on
high-dimensional spaces of aggregated handcrafted fea-
tures. For example, Zhang et al. [148] and Ranganathan et
al. [149] used fully-connected DBN models to learn from
aggregated facial feature point trajectories, both improving
recognition accuracies over shallow aggregation strategies.

Global temporal modeling with RNN based on frame-level
spatial features (T2 in Fig. 5). The properties of RNNs, as
discussed in Section 2.1, make them well-suited to model
the temporal variation of frame-level spatial features. This
approach first extracts high-level spatial features from each
face image, which are then considered as sequential input
to the RNN. Advantages of this approach include the abil-
ity to process long sequences, and the possibility of both
sequence-level and continuous frame-level affect recogni-
tion on image sequences of arbitrary length. Early on, RNNs
were used to learn temporal context from handcrafted spa-
tial features such as coordinates of facial feature points [150],
optical flow [129], and LBP [151].

More recent studies combine RNNs with deep methods
for spatial feature learning discussed in Section 3.1.1, by
adopting deep features from the last layer of a CNN trained
for affect recognition (e.g., [106], [18], [64]). We see both
CNN-RNN (e.g., [18], [90]) and CNN-LSTM (e.g., [108],
[105], [64]) architectures, with CNN-LSTM being the more
frequent choice among the reviewed studies. Global tem-
poral modeling is found to lead to improved accuracies
when compared with simpler methods such as pooling of
spatial features (e.g., [152], [90], [108]). A disadvantage of
most CNN-LSTM implementations is that training occurs
in a disconnected way: The CNN is trained on frame-level,
specifically for static spatial affect recognition. Hence, the
extracted features are not necessarily optimal for further
temporal context learning by the RNN. End-to-end training
of the entire CNN-LSTM system addresses this problem,
and can lead to accuracy improvements [108].

Local temporal modeling with 3D CNN (T3 in Fig. 5).
When using 3D CNN for spatio-temporal modeling of
image sequences as discussed in Section 3.1.1, the line
between spatial and temporal representation learning can
be blurred. While this approach is typically limited to very
short sequences, with further pooling steps necessary to
derive sequence-level labels (e.g., [84], [85]), in some cases
spatio-temporal features can be derived for entire (short)
sequences. For example, Gupta et al. [62] used a variant
called slow fusion [153], which treats the time domain like
a spatial domain, progressively learning low-level to high-
level temporal features. As the amount of parameters re-
quired due to the temporal depth of the input is effectively
reduced, this allows for more input frames.

3.2.2 Learning temporal features from body movement
Besides facial expression, body movement and gestures are
other means of expressing affect visually [1]. In the reviewed
studies, spatial features representing such movements are
extracted using skeletal and shoulder tracking. For example,
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Ranganathan et al. [149] and Kaza et al. [154] used the
approach illustrated in Fig. 5 (T1), to learn spatio-temporal
features from statistics of skeletal tracking point trajectories.
Shoulder cues were used by Nicolaou et al. [150] in the RNN
approach illustrated in Fig. 5 (T2). In comparison with facial
expression and speech, they were found to be less expressive
for prediction of both arousal and valence.

3.2.3 Learning temporal features for SER
To derive fixed-length features at the utterance level, SER
models traditionally aggregate LLDs by high-level statistical
functionals (HSFs) such as mean and standard deviation.
Standard sets of HSFs and LLDs are given in eGeMAPS
[121] and ComParE [123]. HMMs have long served as a
standard choice for further modeling of temporal variation
in speech signals, especially in ASR [155], but also in SER
[125]. More recently, RNNs have emerged as a preferred way
of modeling the sequential aspect of speech [156]. In particu-
lar, 91% of studies reporting comparisons with handcrafted
approaches find that deep temporal features perform better
for SER. This review highlights how DNNs can complement
or replace both HSFs and HMMs for learning temporal
representations in SER.

Learning from aggregated frame-level features (T1 in Fig.
5). Since there is no consensus in the literature over a
”universal” handcrafted feature set with superior perfor-
mance [121], many recent studies have applied a ”brute-
force” approach, resulting in a large number of features
per utterance. This number varies from several hundred
[157] to several thousand [158], [123], depending on the
employed LLDs and HSFs. DNNs can be integrated to learn
more high-level representations of these handcrafted spatio-
temporal feature spaces. Studies aiming to reduce feature
space dimensionality with deep learning almost exclusively
use fully-connected DNNs, consisting of two to four hidden
layers. It is common to initialize model parameters layer-
wise via unsupervised pre-training as RBMs (e.g., [159],
[160]), or AEs (e.g., [78]); subsequently, a Softmax classifica-
tion layer is added for supervised fine-tuning. Alternatively,
DBNs or SAEs can serve as feature extractors for classifica-
tion via support vector machine (e.g., [137]). Dimensionality
reduction of handcrafted features with DNNs can lead to
improvements in accuracy over various databases [161].

Global temporal modeling based on frame-level features with
RNNs (T2 in Fig. 5). In this approach, an utterance-level
RNN models the temporal variation of frame-level features.
Most straightforwardly, LLDs can directly be fed into the
RNN at the frame level (e.g., [141], [162], [63]). Depending
on the nature of the source audio, it can be beneficial to
apply HSFs to frame-level LLDs according to a sliding
window before applying the RNN [151], [65]. One study
suggested that a smaller window size (2s) could be the best
choice [65]. In general, the addition of RNN for temporal
modeling is associated with an increase in model accuracy
(e.g., [129], [97], [162]). When dealing with dimensional
labels, this allows learning features at the frame level. Here,
LSTM is found to outperform state-of-the-art techniques like
SVR (e.g., [150], [151]).

Since 2016, eight studies have explored combining deep
spatial features and RNN-based temporal feature learning.
For spectrogram-based spatial features, Lim et al. [163]

found that the CNN-LSTM architecture yields the best re-
sult on Emo-DB [164]. Applications of similar architectures
based on the raw waveform have also been attempted
[54], [108], showing that end-to-end learning can outper-
form shallow models. Overfitting is still a problem for this
approach due to the large number of model parameters
and limited dataset sizes. Mirsamadi et al. [63] found that
model performance is slightly lower with joint learning of
both short-term spatial features and temporal context on
the IEMOCAP dataset [165], while both improve model
performance when applied independently.

Local temporal modeling with CNNs (T3 in Fig. 5). When
CNNs are used for modeling speech, they typically combine
spatial modeling in the short term with temporal modeling
of longer segments or entire utterances. The kernels of
higher-level (i.e., second or third) convolutional layers can
often be interpreted as learning temporal structure based on
spatial features learned by the kernels in the first layer (see
Section 3.1.2). For example, Trigeorgis et al. [54] performed
pooling across time after learning spatial characteristics
from the raw signal in the first layer, and added a second
layer with 500 ms kernels to learn temporal characteristics.
Similarly, Zhang et al. [85] used an AlexNet to add increas-
ingly more temporal context to learned feature representa-
tions. It is worth noting that while some studies directly
used CNN features for affect prediction [142], [128], others
combined local temporal modeling with global temporal
modeling via RNN [108], [163], or pooling approaches [85].

3.2.4 Learning temporal features from physiological data

Learning from handcrafted features with fully-connected DNNs
(T1 in Fig. 5). As highlighted in Table 3, approach T1 is
the primary application of DNNs for feature learning from
physiological data. For this purpose, fully-connected DNNs
are initialized by iterative training and stacking of unsu-
pervised models such as RBMs or AEs [166], and applied
to functionals of frame-level spatial features. Typical for
EEG are handcrafted features derived from the frequency
domain, such as power spectral density (PSD) coefficients
of different frequency bands. Zheng et al. [167] found that
DBNs can improve recognition accuracy of models based on
differential entropy features. Similarly, Xu and Plataniotis
[168] showed that DBNs can build on PSD features to
outperform state-of-the-art methods on the DEAP dataset.
Deep learning has also been used as part of ensemble
methods [169], and in the form of Echo State Networks [170]
for dimensionality reduction of handcrafted EEG features.
Yin et al. [171] used stacked autoencoders (SAEs) to learn
high-level representations from various peripheral sensors
including skin temperature and blood volume pressure,
improving the state-of-the-art by 5%.

Learning temporal context from spatial features with RNNs
(T2 in Fig. 5). RNNs have been used to learn temporal
context from EEG features to improve recognition accuracies
[146], [55]. Brady et al. [18] found that learning temporal
context with LSTM and handcrafted features leads to im-
provements over shallow baseline models. Ringeval et al.
[65] used a similar approach. They found that while the
given physiological signal has lower predictive power than
audiovisual signals, both are complementary.
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TABLE 4
Learning joint feature representations: Number of studies adopting

different approaches over time.

Year FC DNN (J1)a RNN (J2)a

VA VAP VP PP VA VAP VP PP

2011 - - - - 1 - - -
2012 - - - - 1 - - -
2013 1 - - - - - - -
2014 - - - - - 1 - -
2015 2 1 1 - - - - -
2016 2 1 - 1 1 - - -
2017 3 - - 1 4 - - -

Total 8 2 1 2 7 1 0 0
a Modalities: V = Visual (FER, Body), A = Audio (SER), P = Physio
(EEG, Peripheral, Other).

Learning spatio-temporal representations from raw data with
CNNs (T3 in Fig. 5). A limited number of four studies have
attempted to learn spatio-temporal features directly from
raw physiological data for discrimination between affective
states. Yanagimoto and Sugimoto [145] used a CNN on raw
16-channel EEG data to differentiate between positive and
negative affective states, which is shown to outperform shal-
low models based on common features. Similar results are
reported when learning from intermediate representations
based on differential entropy [55]. Martinez et al. [172] were
the first to learn deep features directly from the peripheral
physiology. For this purpose, they used CNNs trained in
an unsupervised way via AEs to learn features from raw
blood volume pulse and skin conductance signals, which
outperformed models based on handcrafted features.

3.2.5 Takeaways for temporal feature learning
• Deep temporal features lead to higher accuracies

than handcrafted temporal features. Out of 73 studies
that reported comparisons, 92% support this finding.

• While CNNs are well suited for local temporal mod-
eling, RNNs are found to be useful for global tempo-
ral modeling of affect.

• Since 2015, there are studies using deep learning for
both spatial and temporal feature learning.

• We are starting to see studies implementing end-to-
end training for such models [54], [108], however
in this setting the problem of limited labeled data
becomes especially noticeable [63], [139].

3.3 Learning joint feature representations
It is generally accepted in the literature that multimodal
(e.g., audiovisual) sensor combinations have complemen-
tary effects and thus may increase model accuracy [11]. The
challenge in joint multimodal feature learning is how and
at what stage to fuse data from multiple modalities. This
challenge is complicated by the high dimensionality of raw
data, differing temporal resolutions, and differing temporal
dynamics across modalities. Surveys on the general problem
of sensor fusion [173] and specifically on fusion for affect
recognition [59], [174] are available.

Fusion can be achieved at early model stages close to
the raw sensor data, or at a later stage by combining inde-
pendent models. In early or feature-level fusion, features are
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Fig. 6. Applications of deep learning for joint multimodal feature learning
with fully-connected fusion DNNs (J1) and fusion RNNs (J2).

extracted independently and then concatenated for further
learning of a joint feature representation; this allows the
model to capture correlations between the modalities. Late
or decision-level fusion aggregates the results of independent
recognition models. To date, the literature generally reports
that decision-level fusion works better for affect recognition
given the datasets and models currently used [65]. While
decision-level fusion typically only involves simple score
weighing, feature-level fusion is a representation learning
task that may benefit from deep learning. Here, we report
on the approaches of 21 studies that use deep learning for
joint feature learning from multimodal data.

3.3.1 Learning joint features with audiovisual data
The most common sensor combination found in 18 studies
involves facial expressions and speech.

Feature-level fusion with fully-connected DNNs (J1 in Fig. 6).
In this approach, joint feature representations are learned
without considering the temporal context for fusion. For
both modalities, video-level features are extracted using
FER and SER methods that may involve both handcrafted
and deep features (see Sections 3.1 and 3.2). A fully-
connected DNN, typically initialized via unsupervised pre-
training, then learns a high-level joint feature representation
of both modalities as an improvement over “shallow” fea-
ture fusion. Kim et al. [159] and others (e.g., [149], [148])
demonstrated how this can be achieved with DBNs. This
approach is feasible especially in cases where the goal is to
label each video with one affective state. Alternatively, joint
feature representations can be learned at the frame level,
and then aggregated to the video level: Zhang et al. [85]
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used a DBN to fuse frame-level audiovisual features learned
independently via CNNs; the learned features are average-
pooled for classification at the video level and lead to an
improvement over state-of-the-art methods.

Feature-level fusion with RNNs (J2 in Fig. 6). Especially
when predictions are required at the frame level for di-
mensional affective states, feature-level fusion could benefit
by taking into account the temporal context. Modeling via
RNNs makes this possible, potentially improving model
robustness and helping to deal with temporal lags between
modalities [162]. Initial studies reported that dynamic fea-
ture fusion can lead to performance improvements com-
pared to simpler fusion strategies [162]. However, several
other studies based on handcrafted features found that
decision-level fusion on top of individual LSTM models
leads to better performance [65], [129]. Learning from raw
audiovisual data with two CNNs, Tzirakis et al. [108] used
a two-layer LSTM network for feature fusion, which was
found to outperform the state of the art.

3.3.2 Learning joint features with physiological data
A small number of three studies combined the audiovisual
and physiological (AVP) modalities. Ranganathan et al. [149]
demonstrated the feasibility of learning joint feature repre-
sentations of AVP sensor data with approach J1 and a DBN,
but do not compare the performances of different modality
combinations. Ringeval et al. [65] used approach J2 with the
AVP modalities and LSTM. They concluded that in feature-
level fusion, ECG data helps for prediction of valence, but
not arousal.

Feature-level fusion can also be based solely on physi-
ological measurements. Yin et al. [171] successfully used a
fusion SAE to aggregate handcrafted features from several
different sensors. Similarly, Liu et al. [175] used handcrafted
features derived from EEG and eye tracking as input into
a SAE. Both studies found that the representation learned
through feature-level fusion leads to improved accuracy
over individual modalities.

3.3.3 Takeaways for joint feature learning
• Joint feature learning is most commonly applied to

audiovisual fusion (see Table 4).
• To date, there is no consensus whether feature-level

fusion with deep learning leads to superior accuracy
over simple decision fusion. Out of 16 studies that
reported comparisons, only 69% find that it does.

• While dimensional models of affect are only used in
10% of spatial and 30% of temporal feature learning
studies, they are employed in 52% of studies on joint
feature learning.

3.4 Databases and competitions
Most researchers rely on publicly available databases of
affective display as source material for their studies. Of
the 233 studies in our review, only 11% involved private
databases not available to the public. A total of 77 different
public databases were used across the reviewed literature.
The specifics of these databases have considerable impact
on algorithm design for affect recognition, which is why a
comprehensive overview of databases and their properties

is essential to further understanding of the field. The main
differences lie in the available modalities, the number of
subjects and examples, details on how data was acquired,
how affect was elicited and annotated, as well as the type
of affective states used for labels. Some databases are more
frequently mentioned due to them being featured in com-
petitions. In Table 5, we give a summary of the 15 most
commonly used databases in the reviewed studies.

As expected from previous findings, the visual modality
is featured most frequently. Some databases focus exclu-
sively on static FER with discrete labels of categorical af-
fective states. Here, more recent databases such as FER2013
and SFEW2 tend to contain more examples than older
databases such as JAFFE and CK+—this is made possible
by resorting to sources like the web and semi-automatic
labeling procedures as opposed to manual annotation of
data collected in a laboratory. Audiovisual databases are a
second type evident from the literature. A typical setup for
earlier instances (e.g., IEMOCAP, SEMAINE) is a lab-based
video recording of subjects, with induced rather than posed
affective states. More recently, physiological sensors have
also been included, with various peripheral signals and EEG
(e.g., DEAP, RECOLA, and MAHNOB-HCI [184]). A further
approach is to use excerpts from movies and television
shows, which can be labeled semi-automatically based on
subtitles (e.g., AFEW and CASIA).

Another important aspect of databases is the employed
model of affect. Of the 77 public databases used in the
studies covered in our review, 58 use categorical models
(75%), 14 use dimensional models (18%), and only 4 use
both (5.2%). Further, only one database provides unlabeled
affective displays (AUTOENCODER). This heavy reliance of
databases on categorical models is also reflected in the mod-
els employed in the reviewed studies. Overall, 190 studies
use categorical models (82%), 37 studies use dimensional
models (16%), and only 6 use both (2.6%). For categorical
affective states, every sequence is typically labeled in a
discrete fashion with one affective state from a set of pre-
defined labels; whereas, for dimensional affective states,
frames are labeled continuously or in discrete steps. The
ambiguity of human affect inherently makes both affect
recognition and the labeling process difficult—there is an
accuracy limit in the degree of agreement between multiple
labelers. Overall, the trend apparent here goes towards
capturing more naturalistic affective displays, as we venture
from posed to spontaneous displays. Also, because of the
challenges associated with categorical models, researchers
have advocated for further investigating the application of
dimensional models in affect recognition and comparing
them with categorical models [9], [53], [56]. Unfortunately, at
this stage, the number of examples per dataset does not see
a clear upward trend yet and only few deep learning studies
covered in our review investigate both types of models.

Unlabeled databases are used exclusively for trans-
fer learning. When considering large general-purpose
databases like ImageNet, the idea is to learn general low-
level descriptors that help to improve initial model pa-
rameters. For FER, more relevant databases of unlabeled
face images (e.g., VGG-Face) can be used. Smaller, labeled
databases such as FER2013 are also used frequently for
supervised pre-training. Note that these data sources for
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TABLE 5
The top 15 most used databases in the reviewed studies; also included are three large databases published in 2016 and 2017.

Name Year Modalitya Examplesb Details on elicitation and annotation Usesc

V A P M Subjects Examples Source Annotation Affect (Label) Target Transf.

CK+ [112] 2010 • 123 593 Posed (Lab) Manual Categorical (Discrete) 44 6
FER2013 [103] 2013 • 35887 Web search Semi-aut. Categorical (Discrete) 17 23
ImageNet [110] 2009 • 14.2M Web search (Generic image categories) 0 27
JAFFE [176] 1998 • 10 219 Posed (Lab) Manual Categorical (Discrete) 22 0
Emo-DB [164] 2005 • 10 800 Posed (Lab) Manual Categorical (Discrete) 17 3
VGG-Face [111] 2015 • 2622 2.6M Web search (Generic face images) 0 18
IEMOCAP [165] 2008 • • 10 1039 Induced (Lab) Manual Cat./Dim. (Discrete) 14 3
SFEW2 [102] 2015 • 1635 Movies Semi-aut. Categorical (Discrete) 9 3
DEAP [177] 2012 • • 32 40 Induced (Lab) Semi-aut. Dimensional (Discrete) 11 0
AFEW5 [178] 2015 • • 1645 Movies Semi-aut. Categorical (Discrete) 9 0
eNTERFACE [179] 2005 • • 42 1166 Induced (Lab) Manual Categorical (Discrete) 8 1
AFEW6 [12] 2016 • • 1749 Movies Semi-aut. Categorical (Discrete) 8 0
RECOLA [180] 2013 • • • 23 46 Spont. (Lab) Manual Dimensional (Cont.) 8 0
CASIA [181] 2014 • • 219 2 hr TV shows Manual Categorical (Discrete) 7 1
SEMAINE [182] 2010 • • 20 150 Induced (Lab) Manual Dimensional (Cont.) 7 0

AffectNet [57] 2017 • 450K 1M Web search Semi-aut. Cat./Dim. (Discrete) 1 0
EmotioNet [183] 2016 • 1M Web search Automatic Categorical (Discrete) 1 0
AUTOENCODER [62] 2017 • • 6.5M Web search (Non-labeled affective displays) 0 1

a Modalities: V = Visual (FER, Body), A = Auditory (SER), P = Physiological (EEG, Peripheral, Other).
b M = Mode; = Static, = Sequence; Number of subjects given where known.
c Target counts the number of studies that predicted given data; Transfer counts the number of studies that used given data for transfer learning.

transfer learning are primarily focused on static examples
of the visual modality.

Databases published in 2016 and 2017 aim to provide
sufficient training data for deep learning models. Compared
to older databases, they contain many more examples,
which is made possible by (semi-)automating the label-
ing process, or providing unlabeled examples. Three such
databases are included in Table 5. Both AffectNet and Emo-
tioNet are large web-based databases, each at around 1M la-
beled images. Notably, AffectNet includes both dimensional
and categorical labels, encouraging studies to bridge the
gap between affect representations. The AUTOENCODER
dataset is the largest face video dataset with 6.5M examples;
the dataset contains only 2777 labeled examples and is thus
largely unlabeled. It can serve the purpose of unsupervised
pre-training or semi-supervised learning [62].

In this review, we have thus far avoided directly com-
paring studies based on their recognition accuracies. Our
reasoning is that even if both studies focus on the same
dataset, differing test and training sets as well as evaluation
statistics lead to difficulties in fairly comparing results.
This situation is different for organized competitions, where
the criteria are clearly defined and results independently
verified. To illustrate state-of-the-art recognition accuracies,
Table 6 reports the winning entries at affect recognition
competitions from 2013 to 2017. These can generally be
thought of as the latest and best results for the respective
datasets at publication time. We employ the classification
scheme introduced in Table 1 and used throughout this
review to indicate the use of deep learning in these studies.

It is evident that since 2015, all winning entries at these
competitions have made use of deep learning. Evaluation
statistics are given by recognition accuracy for discrete affect
recognition (EmotiW), and correlation coefficients for con-
tinuous affect recognition (AVEC). Progress in recognition

accuracies is measurable: On the AFEW dataset, which
is extended with additional data every year, recognition
accuracies have increased from 41% in 2013 to 60.3% in 2017.

4 DISCUSSION

In this review, we have seen that DNNs are part of most
state-of-the-art affect recognition systems. They are applied
for learning of (i) spatial feature representations, (ii) tem-
poral feature representations, and (iii) joint feature rep-
resentations for multimodal data. Considering the recent
trend towards continuous and multimodal prediction of
spontaneous affective displays in the wild, deep learning is
generally well suited to address the challenges faced by such
systems. Particularly, our results show that out of the 150
studies reporting comparisons between shallow and deep
architectures, 95% reported that deep learning can lead to
improvements over conventional approaches.

However, in comparison to related fields like object
detection and ASR, the impact of deep learning has not yet
been fully felt. This can in part be attributed to the higher
difficulty and inherent ambiguity of affective displays—
although many databases now provide annotations from
multiple labelers, the ground truth tends to be unreliable
and datasets are often imbalanced. A major obstacle is the
relatively small size of labeled datasets. It hinders the ability
of deep models to generalize well, and makes it difficult to
train large models. In this vein, regularization techniques
from general deep learning research [192] are one future
research avenue. However, as of this writing, employed
techniques such as knowledge transfer from related disci-
plines and data augmentation ultimately cannot fully make
up for the lack of data.

Although we notice a trend towards larger labeled
datasets, new approaches are needed to deal with this issue.
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TABLE 6
Winning entries at affect recognition competitions (2013-2017).

Competition Database Winner Deep feature learning Evaluation statisticb

Name Sub-Challengea Spatial Temp. Joint

AVEC 2013 Fully cont. A/V AVID Meng et al. [185] CC: 0.141
EmotiW 2013 A/V AFEW3 Kahou et al. [186] • Accuracy: 41.0%
ICML 2013 Static FER FER2013 Tang et al. [82] • Accuracy: 71.2%
INTERSPEECH’13 SER GEMEP Gosztolya et al. [187] Accuracy: 73.5% (A), 63.3% (V)
AVEC 2014 Fully cont. A/V AVID Kachele et al. [188] CC: 0.63 (A), 0.58 (V), 0.57 (D)
EmotiW 2014 A/V AFEW4 Liu et al. [189] • Accuracy: 50.4%
AVEC 2015 Fully cont. A/V/P RECOLA He et al. [19] • CCC: 0.747 (A), 0.609 (V)
EmotiW 2015 A/V AFEW5 Yao et al. [190] • Accuracy: 53.8%
EmotiW 2015 Static FER SFEW2 Kim et al. [16] • Accuracy: 61.6%
AVEC 2016 Fully cont. A/V/P RECOLA Brady et al. [18] • • CCC: 0.77 (A), 0.687 (V)
EmotiW 2016 A/V AFEW6 Fan et al. [14] • • Accuracy: 59.0%
EmotiW 2016 Group-level FER HAPPEI Li et al. [15] • RMSE: 0.82
AVEC 2017 Fully cont. A/V SEWA Chen et al. [17] • • • CCC: 0.68 (A), 0.76 (V), 0.51 (L)
EmotiW 2017 A/V AFEW7 Hu et al. [95] • Accuracy: 60.3%
EmotiW 2017 Group-level FER GAF Tan et al. [191] • Accuracy: 80.9%

a Modalities: V = Visual (FER, Body), A = Auditory (SER), P = Physiological (EEG, Peripheral, Other).
b Reporting statistics used in competitions: CC = Correlation coefficient, CCC = Concordance correlation coefficient, A = Arousal, V = Valence, D
= Dominance, L = Likability, RMSE = Root mean square error.

The labeling process for video-based affective datasets, es-
pecially with continuous annotations, is expensive and can-
not easily be automated. Unsupervised and semi-supervised
learning are promising trends in this regard. While un-
supervised learning allows models to learn better initial
parameters from unlabeled datasets, fine-tuning with la-
beled data is still required to ”guide” the model towards
its learning goal. The idea of semi-supervised learning is to
label only a fraction of the examples, avoiding the expensive
labeling process for the most part. These labeled examples
can then be leveraged to learn from the remaining, much
larger unlabeled part of the database that was acquired
at a lower cost. Gupta et al. [62] demonstrated the feasi-
bility of semi-supervised learning for affective computing,
achieving promising results using 2777 labeled face videos
to learn from the AUTOENCODER dataset of 6.5M unla-
beled face video clips. In 2018, supervised pre-training was
successfully used at Facebook [193] to transfer knowledge
of 3.5B public Instagram images and hashtags for generic
image classification and object detection. This development
suggests that affect recognition too may benefit from much
larger datasets. Unsupervised learning has also proved suc-
cessful in SER–for example, Deng et al. [140] were able to
improve the training process on labeled data by exploiting
knowledge from unlabeled data using AEs.

In most state-of-the-art affect recognition models, hand-
crafted features still play an important role. While they are
typically outperformed by DNN-learned features in direct
comparison, some challenge-winning models rely on hybrid
architectures that can take advantage of complementari-
ties between the two [152], [18]. This can be attributed to
multiple factors: Handcrafted features are readily available,
widely recognized, and well-designed for specific applica-
tions such as FER and SER. On the other hand, deep models
have not yet been established as methods of affect recog-
nition. There are few specialized architectures researchers
can draw from, which is why many fall back to ones from
object recognition. Furthermore, the number of examples to
draw from is not large enough to learn truly expressive deep

features. Research suggests that the size of a dataset can be
a bottleneck for performance of deep learning models [34].
As these circumstances change, larger and more expressive
deep models specialized for affect recognition will have a
chance of being established. Pre-trained deep models for
FER and SER could become readily available as feature
extractors, similar to handcrafted features.

As we have seen, affect recognition models are com-
prised of multiple components, including the steps of spatial
and temporal feature learning as well as an additional
fusion mechanism in the case of multimodal systems. We
find that as of now, DNNs are generally applied in an
isolated way to manage individual components—hence, a
combination of multiple DNN-based components comes to
mind. In fact, one ideal of classic deep learning research is
the idea of integrating multiple components into globally
trainable systems [194]. Some recent contributions have
shown that affect recognition systems can combine multi-
ple DNN-based components. As discussed throughout this
review, the combination of CNN for feature learning and
LSTM to learn the temporal context is most widely used (21
studies). However, most of these approaches train individ-
ual components separately (e.g., [106], [90]), which may lead
to suboptimal performance considering the whole system.
Future multimodal affect recognition systems are likely to
be trained in an end-to-end fashion, which aligns training of
the entire network closer with the true performance measure
[195] but requires a larger amount of training examples. The
feasibility and effectiveness of global end-to-end training
has been demonstrated in two recent studies: Trigeorgis et
al. [54] combined CNN and LSTM to learn features and
temporal context directly from speech signals. Similarly,
Tzirakis et al. [108] used the CNN-LSTM architecture to
learn features and temporal context directly from raw audio-
visual signals.

Another recent trend from deep learning research that
lends itself to affect recognition of sequential data is the use
of attention mechanisms [196]. They allow models to learn
to pay more attention to promising segments of, say, a video
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Fig. 7. CNNs learn high-level features similar to Action Units in FER
(taken from [91] with permission).

of affective display. Mirsamadi et al. [63] found that even
a simple attention mechanism contributes to SER by, for
example, learning to ignore silent frames—an improvement
that is easily interpretable and adds 1-2% to model accuracy.

In general, DNNs are often described as ”black boxes”,
as their inner workings are complex and difficult to inter-
pret. Recent research has attempted to improve this situa-
tion, for example by offering ways to visualize the activa-
tions of individual filters in CNNs [197]. Multiple studies
have followed this approach to understand how CNNs
recognize facial expressions, finding that higher layers learn
concepts similar to Action Units (e.g., [87], [91]), validating
previous research done in FER—Fig. 7 features some exam-
ples. Similarly, for SER, Tzirakis et al. [108] found that LSTM
cells learn representations similar to well-known prosodic
features. Such results indicate that the study of DNNs in
affective computing could contribute to interdisciplinary
emotion research by giving a further perspective on affective
displays and their representation in general.

The question of categorical versus dimensional represen-
tations of affective states remains unsolved, as no deciding
trend emerges from the literature. In practice, specific details
of available modalities (e.g., static images or video data)
and requirements regarding predictions (e.g., continuous
or video-level) are relevant factors, and available labels on
common databases widely dictate which representation is
used. As can be seen in our review, the majority of studies
still rely on categorical models of affect (82%), particularly in
spatial feature learning (92%). However, given the nature of
sensor data in typical HCI scenarios, it can be expected that
dimensional representations, and combinations of categori-
cal and dimensional models of affect will become even more
relevant as a more natural way of dealing with continuous
data [53]. This already becomes apparent in joint feature
learning and to some extent in temporal feature learning,
where dimensional models are already employed in 52%
and 30% of the reviewed studies, respectively. Databases
such as AffectNet [57], which provide categorical as well
as dimensional annotations of affect in the wild, are an im-
portant step for furthering the investigation of dimensional
models and for better integrating the context of affective
display into human affect recognition.
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Tech. Rep., March 2005.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[23] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Comput., vol. 18, no. 7,
pp. 1527–1554, 2006.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, pp. 436–444, 2015.

[25] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2890471, IEEE
Transactions on Affective Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[26] Y. Bengio, “Learning deep architectures for ai,” Found. Trends
Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.

[27] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. CVPR, 2016, pp. 770–778.

[30] J. Martens and I. Sutskever, “Learning recurrent neural networks
with hessian-free optimization,” in Proc. Int. Conf. Mach. Learn.,
2011, pp. 1033–1040.

[31] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. Int. Conf. Artif. Intell. Stat., 2011, pp. 315–323.

[32] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in Proc.
Int. Conf. Mach. Learn., 2013, pp. 1139–1147.

[33] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc.
Mach. Learn. Res., vol. 37, 2015, pp. 448–456.

[34] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting
unreasonable effectiveness of data in deep learning era,” in Proc.
Int. Conf. Comput. Vision, 2017, pp. 843–852.

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular inter-
action and functional architecture in the cat’s visual cortex,” J.
Physiol., vol. 160, no. 1, pp. 106–154, 1962.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. NIPS,
vol. 25, 2012, pp. 1097–1105.

[37] Y. LeCun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon,
D. Henderson, R. Howard, and W. Hubbard, “Handwritten digit
recognition: Applications of neural network chips and automatic
learning,” IEEE Commun. Mag., vol. 27, no. 11, pp. 41–46, 1989.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
F.-F. Li, “Imagenet large scale visual recognition challenge,” Int.
J. Comput. Vision, vol. 115, no. 3, pp. 211–252, 2015.

[39] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu,
“Understanding hidden memories of recurrent neural networks,”
in Proc. Conf. Visual Anal. Sci. Technol., 2017.

[40] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.
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