
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Learning deep representations for video-based
intake gesture detection

Philipp V. Rouast, Student Member, IEEE, Marc T. P. Adam

Abstract—Automatic detection of individual intake gestures
during eating occasions has the potential to improve dietary
monitoring and support dietary recommendations. Existing stud-
ies typically make use of on-body solutions such as inertial and
audio sensors, while video is used as ground truth. Intake gesture
detection directly based on video has rarely been attempted. In
this study, we address this gap and show that deep learning
architectures can successfully be applied to the problem of video-
based detection of intake gestures. For this purpose, we collect
and label video data of eating occasions using 360-degree video
of 102 participants. Applying state-of-the-art approaches from
video action recognition, our results show that (1) the best model
achieves an F1 score of 0.858, (2) appearance features contribute
more than motion features, and (3) temporal context in form of
multiple video frames is essential for top model performance.

Index Terms—Deep learning, intake gesture detection, dietary
monitoring, video-based

I. INTRODUCTION

D IETARY monitoring plays an important role in assessing
an individual’s overall dietary intake and, based on this,

providing targeted dietary recommendations. Dietitians [1] and
personal monitoring solutions [2] rely on accurate dietary
information to support individuals in meeting their health
goals. For instance, research has shown that the global risk and
burden of non-communicable disease is associated with poor
diet and hence requires targeted interventions [3]. However,
manually assessing dietary intake often involves considerable
processing time and is subject to human error [4].

Automatic dietary monitoring aims to detect (i) when, (ii)
what, and (iii) how much is consumed [5]. This is a complex
and multi-faceted problem involving tasks such as action
detection to identify intake gestures (when), object recognition
and segmentation to identify individual foods (what), as well
as volume and density estimation to derive food quantity
(how much). A variety of sensors have been explored in the
literature, including inertial, audio, visual, and piezoelectric
sensors [5], [6], [7].

Detection of individual intake gestures can improve detec-
tion of entire eating occasions [8] and amounts consumed [9].
It also provides access to measures such as intake speed, as
well as meta-information for easier review of videos. Although
video is often used as ground truth for studies focused on
detecting chews, swallows, and intake gestures, it has rarely
been used as the basis for automatic detection. However, there
are several indications that video could be a suitable data

The authors are with the School of Electrical Engineering and Computing,
The University of Newcastle, Callaghan, NSW 2308, Australia. E-mail:
philipp.rouast@uon.edu.au, marc.adam@newcastle.edu.au.

source to monitor such events: (i) increasing exploration of
video monitoring in residential and hospital settings [10], [11],
(ii) the rich amount of information embedded in the visual
modality, and (iii) recent advances in machine learning, and
in particular deep learning [12], for video action recognition
that have largely been left unexplored in dietary monitoring.

In this paper, we address this gap by demonstrating the
feasibility of using deep neural networks (DNNs) for auto-
matic detection of intake gestures from raw video frames. For
this purpose, we investigate the 3D CNN [13], CNN-LSTM
[14], Two-Stream [15], and SlowFast [16] architectures which
have been applied in the field of video action recognition,
but not for dietary monitoring. These architectures allow to
consider temporal context in the form of multiple frames.
Further, instead of relying on handcrafted models and features,
deep learning leverages a large number of examples to learn
feature representations on multiple levels of abstraction. In
dietary monitoring, deep learning has mainly been used for
image-based food recognition (what) [17], and recently in
intake gesture detection based on inertial sensors (when) [6].
However, it has yet to be applied on video-based intake gesture
detection. Our main contributions are the following:

1) We fill the gap between dietary monitoring and video
action recognition by demonstrating the feasibility of
using deep learning architectures to detect individual
intake gestures from raw video frames. We conduct a
laboratory study with 102 participants and 4891 intake
gestures, by sourcing video from a 360-degree camera
placed in the center of the table. A ResNet-50 SlowFast
model achieved the best F1 score of 0.858.

2) Video action recognition can build on both appearance
and motion features. It is in general not clear which are
more important for a given action [18]. Using a 2D CNN
without temporal context, we show that appearance (indi-
vidual frames) performs better than motion (optical flow
between adjacent frames) for detecting intake gestures.

3) Similarly, it is not clear to what extent temporal context
improves model accuracy of detecting a given action [19].
Comparing the best model with (ResNet-50 SlowFast)
and the best 2D CNN without temporal context, we find
a relative F1 improvement of 8%.

The remainder of the paper is organized as follows: In
Section II, we discuss the related literature, including dietary
monitoring and video action recognition. Our proposed models
are introduced in Section III, and the dataset in Section IV.
We present our experiments and results in Section V, and draw
conclusions in Section VI.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

frame

2D CNN

2D fusion

flows

features
3) Two-Stream

2D CNN

t

slow

3D CNN

3D fusion

fast

features
4) SlowFast

3D CNN

t

2) CNN-LSTM

LSTM LSTM

features

2D CNN 2D CNN

frame 1 frame K
t

frames
t

features

1) 3D CNN

3D CNN

Fig. 1. The four investigated approaches from video action recognition based on temporal context t (adapted from Carreira and Zisserman [20]).

II. RELATED RESEARCH

A. Dietary monitoring

At the conceptual level, dietary monitoring broadly captures
three components of recognition, namely what (e.g., identi-
fication of specific foods), how much (i.e., quantification of
consumed food), and when (i.e., timing of eating occasions).
Traditional paper-based methods such as recalls and special-
ized questionnaires [21] are still commonly used by dietitians.
Amongst end-users, mobile applications that allow manual
logging of individual meals are also popular. These active
methods are characterized by a considerable amount of effort,
and known to be affected by biases and human error [4].

Realizing the requirement for objective measurements of
a person’s diet, several sensor-based approaches of passively
collecting information associated with diet have been proposed
in the literature. With the emergence of labeled databases of
food images [22], [17], food recognition from still images has
become a popular task in computer vision research. The state
of the art uses features learned by deep convolutional neural
networks (CNNs) to distinguish between food classes [23].
CNNs are DNNs especially designed for visual inputs.

Image-based estimation of food volume and associated calo-
ries typically extends food recognition by volume estimation of
different foods, and linking with nutrient databases [24], [25].
Estimation of food volume from audio and inertial sensors
based on individual bite sizes has also been proposed [9].

In detecting intake behavior, we distinguish between detec-
tion of events describing meal microstructure (e.g., individual
intake gestures), and detecting intake occasions as a whole
(e.g., a meal), which can be seen as clusters of detected
events [26]. Besides aiding in the estimation of food volume
[9], information about meal microstructure can be leveraged
to improve active methods [27]. It also allows dietitians to
quantify measures of interest such as the rate of eating [28].

In general, detection of chews and swallows is typically
attempted using on-body audio or piezoelectric sensors, whilst
detection of intake gestures is the domain of wrist-mounted in-
ertial sensors [29]. Chews and swallows generate characteristic
audio signatures, which was exploited for automatic detection
of meal microstructure as early as 2005 [30], [31]. Swallows
can also be registered using piezoelectric sensors measuring
strain on the jaw [32]. Inertial sensors can be used to measure
the acceleration and spatial movements of the wrist to identify
intake gestures [33], [34], [35]. Recently, DNNs were applied
for this purpose [6].

B. Video-based intake gesture recognition

Despite the importance of visual sensors for recording
ground truth, video data of eating occasions is rarely consid-
ered as the basis for automatic detection of meal microstruc-
ture. This is surprising, as the visual modality contains a broad
range of information about intake behavior. In fact, in 2004,
one of the earliest works in this field considered surveillance
type video recorded in a nursing home to detect intake ges-
tures [36]. This approach relied on optical flow-based motion
features, which were used to train a Hidden Markov Model.
A further approach used object detection of face, mouth, and
eating utensils which was realised with haar-like appearance
features [37]. We also see skeleton-based approaches with
additional depth information [38], [39]. Deep learning, which
is the state of the art for video action recognition, has not been
explored to the best of our knowledge.

C. Video action recognition

The task of action recognition from video extends 2D image
input by the dimension of time. While temporal context can
carry useful information, it also complicates the search for
good feature representations given the typically much larger
dimensionality of the raw data. Before the proliferation of deep
learning, approaches in video action recognition would follow
the traditional paradigm of pattern recognition: Computing
complex hand-crafted features from raw video frames, based
on which shallow classifiers could be learned. Such features
were either video-level aggregation of local spatio-temporal
features such as HOG3D [40], or point trajectories of dense
points computed, e.g., using optical flow [41]. The following
four deep learning architectures emerged from the literature
on video action recognition, as shown in Fig. 1:

1) 3D CNN – Spatio-temporal convolutions: The 3D CNN
approach features 3D convolutions instead of the 2D con-
volutions found in 2D CNNs. Videos are treated as spatio-
temporal volumes, where the third dimension represents tem-
poral context. 3D CNNs can thus automatically learn low-
level features that take into account both spatial and temporal
information. This approach was first proposed in 2010 by Ji
et al. [13], who integrated 3D convolutions with handcrafted
features. Running experiments with end-to-end training on
larger datasets, Karpathy et al. [19] reported that it works
best to slowly fuse the temporal information throughout the
network. However, they found that temporal context only

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

improves model accuracy for some classes such as juggling;
furthermore, it reduced accuracy for some classes [19]. Other
experiments regarding architecture choices concluded that 3D
CNN can model appearance and motion simultaneously [42].

2) CNN-LSTM – Incorporating recurrent neural networks:
In the CNN-LSTM approach, the temporal context is modelled
by a recurrent neural network (RNN). RNNs are DNNs that
take the previous model state as an additional input. In 2015,
Donahue et al. [14] proposed to use the sequence of high-
level spatial features learned by a CNN from individual video
frames as input into a long short-term memory (LSTM) RNN.
Such LSTM networks are known to be easier to train for longer
sequences [43]. The CNN-LSTM model has the advantage of
being more flexible with regards to the number of input frames,
but has relatively many parameters and appears to be more data
hungry in comparison to other approaches [20].

3) Two-Stream – Decoupling appearance and motion: In
2014, Simonyan and Zisserman [15] observed that 2D CNN
models without temporal context achieved accuracy close to
the 3D CNN approach [19], and that state-of-the-art accuracies
involved handcrafted trajectory-based representations based on
motion features. They proposed the two-stream architecture,
which decouples appearance and motion by using a single
still frame (appearance) and temporal context in form of
stacked optical flow (motion). Both are fed into separate
CNNs, where the appearance CNN is pre-trained on the large
ImageNet database. While the original design employed score-
level fusion [15], later variants used feature-level fusion of the
last CNN layers [44].

4) SlowFast – Joint learning at different temporal resolu-
tions: The SlowFast architecture proposed by Feichtenhofer et
al. [16] in late 2018 learns from temporal context at multiple
temporal resolutions. As of mid 2019, it represents the state
of the art in video action recognition with 79% accuracy on
the large Kinetics dataset without any pre-training. The idea of
decoupling slow and fast motion is integrated into the network
design. Two pathways make up the SlowFast architecture,
consisting of a 3D CNN each: The slow pathway has more
capacity to learn about appearance than motion, while the
fast pathway works the other way around. This is realized by
setting a factor α as the difference in sequence downsampling,
and a factor β as the difference in learned channels. A
number of lateral connections allow that information from both
pathways is fused.

III. PROPOSED METHOD

Detecting individual intake gestures from video requires
prediction of sparse points in time. We adopt the approach
of Kyritsis et al. [6] and split this problem into two stages, as
illustrated in Fig. 2:
Stage I: Estimation of state probability at the frame level,

i.e., estimating the probability pintake for each frame, and
Stage II: Detection of intake gestures, by selecting sparse

points in time based on the estimated probabilities.

A. Stage I: Models for frame-level probability estimation
In Stage I, our models estimate pintake, which is the

probability that the label of the target frame is “intake”. The

t
0

1

t
0

1
pt

frames

pintake

Ground
truth
Probabilities

Detections

Stage I

≥ d

Temporal
context

Target

Stage II

Model

Fig. 2. Illustration of sample outputs at the two stages. In Stage I, the model
estimates the probability pintake for a target frame. For models with temporal
context, input consists of multiple frames (16 in our experiments), of which
the last frame is the target. In Stage II, detections of intake events are realized
using a local maximum search on the pt-thresholded series of probabilities,
where the detections have to be at least d apart (in our experiments, d = 2s).

four models identified from the literature on video action
recognition represent our main models (3D CNN, CNN-
LSTM, Two-Stream, SlowFast; see Fig. 1). In addition to the
target frame, each of these four models considers a temporal
context of further frames preceding the target frame. As a
baseline and for experiments, we additionally employ a 2D
CNN. Because the 2D CNN does not have a temporal context,
this enables us to (1) discern to what extent the temporal
context improves model performance and (2) directly compare
the importance of appearance and motion features.

For each model, we propose a small instantiation with rela-
tively few parameters, and a larger instantiation using ResNet-
50 [45] as backbone. In the following, we present each of
the proposed models adapted for food intake gesture detection
(see Tables I and II for details). Source code for all models is
available at https://github.com/prouast/deep-intake-detection.

0) 2D CNN: The 2D CNN functions as a baseline for our
study, indicating what is possible without temporal context.
This allows us to discern the importance of the temporal
context for intake gesture detection. Further, the 2D CNN also
allows us to directly compare a model based solely on motion
to one solely based on visual appearance. This assessment is
not possible for the other four models.

Motion information can be of importance for classes with
fast movement such as juggling [19]. For detection of intake
gestures, it seems intuitive that appearance may be the more
important modality, which is what we are seeking to confirm
here. For appearance input is the single target frame, and for
motion the optical flow between the target frame and the frame
directly preceding it. We use Dual TV-L1 optical flow [46],
which produces two channels of optical flow corresponding to
the horizontal and vertical components, as opposed to three
RGB channels for frames.
0a) Small instantiation A five-layer CNN of the architecture

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE I
SMALL MODEL INSTANTIATIONS. WE REPORT TEMPORAL, SPATIAL, AND CHANNEL DIM. OF CONVOLUTION KERNELS AS {T × S2 , C}, TEMPORAL

AND SPATIAL DIM. OF POOLING OPS. AS {T × S2}, AND STRIDE SIZES LIKEWISE. CORRESPONDING OUTPUT SIZES ARE REPORTED AS {T × S2 × C}.

0a) 2D CNNa 1a) 3D CNN 2a) CNN-LSTM 3a) Two-Streama 4a) SlowFastb

Layer frame
flow

frame
flows

slow
fast

data 1282× 3|2 16×1282×3 16× 1282 × 3 1282 × 3
1282 × 32

4× 1282 × 3
16× 1282 × 3

conv0c 32, 3
str. 12

1282 × 3
1282 × 3

conv1 32, 32
str. 12

1282×32 3× 32, 32
str. 1× 12

16×1282×32 32, 32
str. 12

16× 1282 × 32 32, 32
str. 12

1282 × 32
1282 × 32

1|3× 32, 32|8
str. 1× 12

4× 1282 × 32
16× 1282 × 8

pool1 22

str. 22
642 × 32 2× 22

str. 2×22
8× 642 × 32 22

str. 22
16× 642 × 32 22

str. 22
642 × 32
642 × 32

1× 22

str. 1× 22
4× 642 × 32
16× 642 × 8

conv2 32, 32
str. 12

642 × 32 3× 32, 32
str. 1× 12

8× 642 × 32 32, 32
str. 12

16× 642 × 32 32, 32
str. 12

642 × 32
642 × 32

1|3× 32, 32|8
str. 1× 12

4× 642 × 32
16× 642 × 8

pool2 22

str. 22
322 × 32 2× 22

str. 2×22
4× 322 × 32 22

str. 22
16× 322 × 32 22

str. 22
322 × 32
322 × 32

1× 22

str. 1× 22
4× 322 × 32
16× 322 × 8

conv3 32, 64
str. 12

322 × 64 3× 32, 64
str. 1× 12

4× 322 × 64 32, 64
str. 12

16× 322 × 64 32, 64
str. 12

322 × 64
322 × 64

1|3× 32, 64|16
str. 1× 12

4× 322 × 64
16× 322 × 16

pool3 22

str. 22
162 × 64 2× 22

str. 2×22
2× 162 × 64 22

str. 22
16× 162 × 64 22

str. 22
162 × 64
162 × 64

1× 22

str. 1× 22
4× 162 × 64
16× 162 × 16

conv4 32, 64
str. 12

162 × 64 3× 32, 64
str. 1× 12

2× 162 × 64 32, 64
str. 12

16× 162 × 64 32, 64
str. 12

162 × 64
162 × 64

1|3× 32, 64|16
str. 1× 12

4× 162 × 64
16× 162 × 16

pool4 22

str. 22
82 × 64 2× 22

str. 2×22
1× 82 × 64 22

str. 22
16× 82 × 64 22

str. 22
82 × 64
82 × 64

1× 22

str. 1× 22
4× 82 × 64
16× 82 × 16

fusion 82 × 64 82 × 64

flatten 4096 4096 16× 4096 4096 4096

dense 1024 1024 16× 1024 1024 1024

lstm 16× 128

dense 2 2 16× 2 2 2
a For 2D CNN and Two-Stream, colors red and blue highlight how dimensions differ between frames and flows.
b For SlowFast, colors orange|cyan highlight the differences in model parameters and dimensions between the slow and fast pathways.
c Only for flow input; Serves the purpose of producing 3 channels for transfer learning.

type popularised by AlexNet [47].
0b) ResNet-50 instantiation We adopt the architecture given

by [45], which allows us to use pre-trained models.

1) 3D CNN: This model has the ability to learn spatio-
temporal features. We extend the 2D CNN introduced in the
previous section by using 3D instead of 2D convolutions. The
third dimension corresponds to the temporal context. We use
temporal pooling following the slow fusion approach [19].

1a) Small instantiation Extending the small 2D CNN to 3D,
we use temporal convolution kernels of size 3 as recom-
mended by [42]; temporal pooling is realized in the max
pooling layers.

1b) ResNet-50 instantiation We extend ResNet-50 [45] to
3D, but modify the dimensions to fit our input, since we
do not use transfer learning for the 3D CNN. Within each
block, the first convolutional layer has a temporal kernel
size of 3, a choice adopted from [16]. Temporal fusion
is facilitated by using temporal stride 2 in the second
convolutional layer of the first block in each block layer.

2) CNN-LSTM: The CNN-LSTM adds an LSTM layer to
model a sequence of high-level features learned from raw
frames. Note that this does not allow the model to learn low-
level spatio-temporal features (as opposed to 3D CNN). Given
the clear temporal structure of intake gestures (movement
towards the mouth and back), it does however seem intuitive

that knowledge of the development of high-level features from
temporal context could help predict the current frame.

2a) Small instantiation We use the features from the first
dense layer of the small 2D CNN described previously
as input into one LSTM layer with 128 units.

2b) ResNet-50 instantiation The spatially pooled output of a
ResNet-50’s [45] last block is used as input into one
LSTM layer with 128 units.

3) Two-Stream: For our instantiations of the Two-Stream
approach, we follow the original work by Simonyan and Zis-
serman [15] to select the model input: The appearance stream
takes the target frame as input; meanwhile, the motion stream
is based on the stacked horizontal and vertical components
of optical flow calculated using Dual TV-L1 from pairs of
consecutive frames in the temporal context.

3a) Small instantiation Motion and appearance stream both
follow the small 2D CNN architecture; after the last
pooling layer, the streams are pooled using spatially
aligned conv fusion as proposed by [44].

3b) ResNet-50 instantiation Motion and appearance stream
both follow the ResNet-50 [45] architecture; after the last
block layer, the streams are pooled using spatially aligned
conv fusion [44].

4) SlowFast: The SlowFast model processes the temporal
context at two different temporal resolutions. Since our dataset

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE II
RESNET-50 MODEL INSTANTIATIONS. WE REPORT TEMPORAL, SPATIAL, AND CHANNEL DIM. OF CONV. KERNELS AS {T × S2 , C}, TEMPORAL AND
SPATIAL DIM. OF POOLING OPS. AS {T × S2}, AND STRIDE SIZES LIKEWISE. THE CORRESPONDING OUTPUT SIZES ARE REPORTED AS {T × S2 × C}.

Layer 0b) 2D CNNa 1b) 3D CNN 2b) CNN-LSTM 3b) Two-Streama 4b) SlowFastb

frame
flow

frame
flows

slow
fast

data 2242

×3|2
16×1282

×3
16×2242

×3
2242 × 3
2242 × 32

2× 1282 × 3
16× 1282 × 3

conv0c 32, 3
stride 12

1122

×3
32, 3
stride 12

2242 × 3
2242 × 3

conv1 72, 64
stride 22

1122

×64
3× 52, 64
stride 1× 12

16×1282

×64
72, 64
stride 22

16×1122

×64
72, 64
stride 22

1122 × 64
1122 × 64

1|3× 52, 64|8
stride 1× 12

2× 1282 × 64
16× 1282 × 8

pool1 32

stride 22
562

×64
3× 32

stride 2× 22
8× 642

×64
32

stride 22
16× 562

×64
32

stride 22
562 × 64
562 × 64

1× 32

stride 1× 22
2× 642 × 64
16× 642 × 8

res2.x
(×3)

12, 64

32, 64

12, 256

562

×256

3× 12, 64

1× 32, 64

1× 12, 256

8× 642

×256

12, 64

32, 64

12, 256

16× 562

×256

12, 64

32, 64

12, 256

562 × 256
562 × 256

1|3× 12, 64|8
1× 32, 64|8

1× 12, 256|32
2× 642 × 256
16× 642 × 32

res3.x
(×4)

12, 128

32, 128

12, 512

282

×512

3× 12, 128

1× 32, 128

1× 12, 512

4× 322

×512

12, 128

32, 128

12, 512

16× 282

×512

12, 128

32, 128

12, 512

282 × 512
282 × 512

1|3× 12, 128|16
1× 32, 128|16
1× 12, 512|64

2× 322 × 512
16× 322 × 64

res4.x
(×6)

12, 256

32, 256

12, 1024

142

×1024

3× 12, 256

1× 32, 256

1× 12, 1024

2× 162

×1024

12, 256

32, 256

12, 1024

16× 142

×1024

12, 256

32, 256

12, 1024

142 × 1024
142 × 1024

3× 12, 256|32
1× 32, 256|32

1× 12, 1024|128
2×162×1024
16×162×128

res5.x
(×3)

12, 512

32, 512

12, 2048

72

×2048

3× 12, 512

1× 32, 512

1× 12, 2048

1× 82

×2048

12, 512

32, 512

12, 2048

16× 72

×2048

12, 512

32, 512

12, 2048

72 × 2048
72 × 2048

3× 12, 512|64
1× 32, 512|64

1× 12, 2048|256
2× 82 × 2048
16× 82 × 256

fusion 72 × 2048 1× 12 × 2560

spatial
pool

12 ×
2048

1× 12 ×
2048

16× 12×
2048

12 × 2048

flatten 2048 2048 16×2048 2048 2560

lstm 16× 128

dense 2 2 16× 2 2 2
a For 2D CNN and Two-Stream, colors red and blue highlight how dimensions differ between frames and flows.
b For SlowFast, colors orange|cyan highlight the differences in model parameters and dimensions between the slow and fast pathways.
c Only for flow input; Serves the purpose of producing 3 channels for transfer learning.

has fewer frames than in the original work [16], we choose the
factors α = 4 and β = 0.25 for our SlowFast instantiations.
4a) Small instantiation Both pathways are based on the small

2D CNN; we extend the convolutional layers to 3D and
set the temporal kernel size to 1 for the slow pathway
and to 3 for the fast pathway. Following [16], we choose
time-strided convolutions of kernel size 3×12 for a lateral
connection after each of the four convolutional layers.
Fusion consists of temporal average pooling and spatially
aligned 2D conv fusion [44].

4b) ResNet-50 instantiation We directly follow [16] who
themselves used ResNet-50 as backbone for SlowFast,
only using the same dimension tweaks as in our ResNet-
50 2D CNN. Fusion consists of global average pooling
and concatenation.

B. Loss calculation

We use cross-entropy loss for all our models. At evaluation
time, we only consider the target frame for prediction, which
corresponds to the last frame of the input (see Fig. 2). The
same applies to loss calculation during training for all models
except CNN-LSTM: Following [20], we train the CNN-LSTM

using the labels of all input frames, but evaluate only using
the label of the target frame.

Due to the nature of our data, the classes are very im-
balanced with many more “non-intake” frames than “intake”
frames. When computing mini-batch loss, we correct for this
imbalance by using weights calculated as

wi =
m

C(i) ∗ n
(1)

to scale the loss for the m labels y = {y1, ..., ym} in each
minibatch, where n is the number of classes and C(i) is the
number of elements of y which equal yi.

C. Stage II: Detecting intake gestures

We follow a maximum search approach [6] to determine
the sparse individual intake gesture times. Based on estimated
frame-level probabilities p, we first derive p′ by setting all
probabilities below a threshold pt to zero. This leaves all
frames {f : pintake,f ≥ pt} as candidates for detections,
as seen at the bottom of Fig. 2. Subsequently, we perform
a search for local maxima in p′ with a minimum distance d

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Record
360º

Remap
Crop Crop Crop Crop

Fig. 3. Recording of one session. The spherical video is remapped to equirectangular representation, cropped, and reshaped to square shape.

TABLE III
SUMMARY STATISTICS FOR OUR DATASET AND THE TRAINING/VALIDATION/TEST SPLIT.

Training Validation Test Total
Type # Mean [s] Std [s] # Mean [s] Std [s] # Mean [s] Std [s] # Mean [s] Std [s]
Participants 62 802.25 243.31 20 785.97 243.74 20 891.00 222.27 102 816.46 240.07
Intake Gestures 2924 2.35 1.03 952 2.28 1.00 997 2.29 1.01 4891 2.32 1.02

between maxima. The intake gesture times are then inferred
from the indices of the maxima.

IV. DATASET

We are not aware of any publicly available dataset including
labeled video data of intake gestures. Related studies that
involved collection of video data as ground truth typically do
not make the video data available, and instead focus on the
inertial [6] and audio sensor data [48].

For this research, we collected and labeled video data of 102
participants consuming a standardized meal of lasagna, bread,
yogurt, and water in a group setting (ethics approval H-2017-
0208). The data was collected in sessions of four participants
at a time seated around a round table in a closed room without
outside interference. Participants were invited to consume their
meal in a natural way1 and encouraged to have a conversation
in the process. A 360fly-4K camera was placed in the center
of the table, recording all four participants simultaneously. As
illustrated in Fig. 3, raw spherical video was first remapped to
equirectangular representation. We then cropped out a separate
video for each individual participant such that the dimensions
include typical intake gestures. Each video was trimmed in
time to only include the duration of the meal, and spatially
scaled to a square shape.

Two independent annotators labeled and cross-checked
the intake gestures in all 102 videos as durations using
ChronoViz2. Each gesture is assigned as start timestamp the
point where the final uninterrupted movement towards the
mouth starts; as end timestamp, it is assigned the point when
the participant has finished returning their hand(s) from the
movement or started a different action. Based on the start
and end timestamps, we derive a label for each video frame
according to the following procedure: If a video frame was
taken between start and end of an annotated gesture, it is

1After the meal, 64 of the 102 participants (63%) responded to the statement
“The presence of the video camera changed my eating behavior” (5-point
Likert scale, ranging from (1) strongly disagree to (5) strongly agree). With
an average score of 2.11, we conclude that participants did not feel that the
presence of the camera considerably affected their eating behavior.

2See http://chronoviz.com.

assigned the label “intake”. If a video frame is taken outside of
any annotated gestures, it is assigned the label “non-intake”.
The dataset is available from the authors on request.

V. EXPERIMENTS

We use a global split of our dataset into 62 participants
for training, 20 participants for validation, and 20 participants
for test as summarized in Table III. To reduce computational
burden, we downsample the video from 24 fps to 8 fps, and
resize to dimensions 140x140 (128x128 after augmentation).

A. Stage I: Estimating frame-level intake probability

We apply the models introduced in Section III to classify
frames according to the two labels “intake” and “non-intake”.
For our experiments, we distinguish between models without
and with temporal context:
• Models without temporal context (0a-0b) are of interest

as a baseline, and to experimentally compare appearance
and motion features. For appearance, input is the single
target frame, and for motion, optical flow between the
target frame and the one preceding it.

• For the models with temporal context (1a-4b), input
consists of 16 frames, which corresponds to 2 seconds at
8 fps. The last of these frames is the prediction target. To
take maximum advantage of the available training data,
we generate input using a window shifting by one frame.
The use of temporal context implies that the first 15 labels
are not predicted.

1) Training: We use the Adam optimizer to train each
model on the training set. Training runs for 60 epochs with
a learning rate starting at 3e-4 and exponentially decaying
at a rate of 0.9 per epoch. Models without temporal context
are trained using batch size 64, while models with temporal
context are trained using batch size 8.3 Using the validation
set, we keep track of the best models in terms of unweighted
average recall (UAR), which is not biased by class imbalance.

3Batch sizes were chosen considering space constraints training on NVIDIA
Tesla V100 at fp32 accuracy, and to be consistent across models.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE IV
RESULTS FOR STAGES I AND II. REPORTED VALUES ARE BASED ON THE TEST SET, WHICH WAS ONLY EVALUATED ONCE.

Model Features useda Temporal Stage I Stage IIc

Frames Flows contextb #Params UAR p̂t TP FP1 FP2 FN F1

0a) � Small 2D CNN X

Without

4.26M 82.63% 0.957 670 39 287 321 0.674
0a) � Small 2D CNN X 4.26M 71.76% 0.793 662 45 1023 329 0.487
0b) � ResNet-50 2D CNN X 23.5M 86.39% 0.964 829 54 211 162 0.795
0b) � ResNet-50 2D CNN X 23.5M 71.34% 0.865 661 53 1163 330 0.461
1a) � Small 3D CNN X

With

4.39M 87.54% 0.997 795 37 169 196 0.798
2a) � Small CNN-LSTM X 4.85M 83.36% 0.983 674 17 104 317 0.755
3a) � Small Two-Stream X X 4.34M 81.96% 0.973 653 36 185 338 0.700
4a) � Small SlowFast X 4.49M 88.71% 0.996 754 31 103 237 0.803
1b) � ResNet-50 3D CNN X 32.2M 88.77% 0.992 775 25 54 216 0.840
2b) � ResNet-50 CNN-LSTM X 24.6M 89.74% 0.996 791 29 38 200 0.856
3b) � ResNet-50 Two-Stream X X 47.0M 85.25% 0.997 806 49 82 185 0.836
4b) � ResNet-50 SlowFast X 36.7M 89.01% 0.987 824 23 83 167 0.858

a Frame (appearance) features are raw frames; Flow (motion) features are optical flow computed between adjacent frames.
b Temporal context consists of 16 frames, the last of which is the target frame.
c Downsampling to 8 fps causes temporally close events to merge, hence total number of intake gestures in the test set is 991.

t TP FNFP1 FP2

1 2 3 4 Ground
truth

Detections

Fig. 4. The evaluation scheme proposed by Kyritsis et al. [6]. (1) A true
positive is the first detection within each ground truth event; (2) False positives
of type 1 are further detections within the same ground truth event; (3)
False positives of type 2 are detections outside ground truth events; (4) False
negatives are non-detected ground truth events.

For regularization, we use l2 loss with a lambda of 1e-4.
Dropout is used in all small instantiations of our models on
convolutional and dense layers with rate 0.5, but we do not use
dropout for the ResNet-50 instantiations. We also use data aug-
mentation by dynamically applying random transformations:
Small rotations, cropping to size 128x128, horizontal flipping,
brightness and contrast changes. All models are learned end-
to-end, optical flow is precomputed using Dual TV-L1 [46].

2) Transfer learning and warmstarting for better initial
parameters: While the initial small 2D CNN is trained from
scratch, we use it to warmstart the convolutional layers of
both the small CNN-LSTM and the small Two-Stream model.
The ResNet-50 2D CNN is initialized using an off-the-shelf
ResNet-50 trained on the ImageNet database. To fit ImageNet
dimensions, we resize our inputs for this model to 224x224,
as listed in Table II. We use the ResNet-50 2D CNN to
warmstart the convolutional layers of both the ResNet-50
CNN-LSTM and the ResNet-50 Two-Stream model. All 3D-
CNN and SlowFast models are trained from scratch.

B. Stage II: Detecting intake gestures

For the detection of intake gestures, we build on the
exported frame-level probabilities using the models trained in
Stage I. We then apply the approach described in Section III-C
to determine sparse detections.

1) Evaluation scheme: We use the evaluation scheme pro-
posed by Kyritsis et al. [6] as seen in Fig. 4. According to the
scheme, one correct detection per ground truth event counts
as a true positive (TP), while further detections within the

0.5

0.6

0.7

0.8

0.9

flows bothframes

F1

(a) Features used

without with

(b) Temporal context

small ResNet

(c) Model depth

Fig. 5. Comparing model performance in terms of F1 scores. It is apparent
that (a) models using frames as features perform better than models using
optical flow, (b) models with temporal context tend to perform better than
models without, and (c) larger (deeper) models tend to perform better. Models
are color-coded according to Table IV.

same ground truth event are false positives of type 1 (FP1).
Detections outside ground truth events are false positives of
type 2 (FP2), and non-detected ground truth events count
as false negatives (FN). Based on the aggregate counts, we
calculate precision (TP

TP+FP1+FP2
), recall (TP

TP+FN), and the
F1 score (2 ∗ Precision∗Recall

Precision+Recall).
2) Parameter setting: The approach described in Section

III-C requires setting two hyperparameters: The minimum
distance between detections d, and the threshold pt. We follow
Kyritsis et al. [6] and set d = 2s, which approximates the
mean duration of intake gestures, see Table III. Since we only
run one final evaluation of each model on the test set, we use
the validation set to approximate a good threshold pt. Hence,
for each model, we run a grid search between 0.5 and 1 on
the validation set using a step size of 0.001 and choose the
threshold that maximizes F1. Table IV lists the final p̂t.

C. Results

The best result is achieved by the state-of-the-art ResNet-50
SlowFast network with an F1 score of 0.858. In general, we
find that model accuracy is impacted by three factors of model
choice, namely (i) frame or flow features, (ii) with or without

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0.0

0.5

1.0
p

(a) 2D CNN (flow) (b) 2D CNN (frame) (c) 3D CNN

0.0

0.5

1.0

p

(d) CNN-LSTM (e) Two-Stream (f) SlowFast

Fig. 6. Aggregating pintake by model for all ground truth events in the vali-
dation set. Predictions have been aligned in time and linearly interpolated. We
plot the median and [q25, q75] interval for small and ResNet-50 instantiations
respectively. Models are color-coded according to Table IV.

temporal context, and (iii) model depth. Fig. 5 illustrates this
by plotting the F1 values grouped by each of these factors.

1) Frame and flow features, Fig. 5 (a): Using the 2D
CNN, we are able to directly compare how frame (appearance)
and flow (motion) features affect model performance. For
the small and ResNet instantiations, frame features lead to a
relative F1 improvement of 38% and 72% over flow features.
An improvement is also measurable for UAR. Further, the
Two-Stream models, which mainly rely on flow features,
perform worse than the other models with temporal context.
We can conclude that for detection of intake gestures, more
information is carried by visual appearance than by motion.

2) Temporal context, Fig. 5 (b): To assess the usefulness
of temporal context, we compare the accuracies of our models
with and without temporal context. The straightforward exten-
sion of Small 2D CNN to Small 3D CNN adds a 17% relative
F1 improvement. Comparing the best models with (ResNet-50
SlowFast) and without temporal context (ResNet-50 2D CNN),
we find a relative F1 improvement of 8%. We conclude that
temporal context considerably improves model accuracy.

Considering model choice, we observe that the Small 3D
CNN is superior to its CNN-LSTM counterpart, however the
opposite is true for the ResNet-50 instantiations. This may be
due to the fact that for the ResNet instantiations, the CNN-
LSTM is pre-trained on ImageNet, while the 3D CNN is
not. We conclude that the 3D CNN could be useful for slim
models (e.g., for mobile devices), but for larger models, all
architectures with temporal context should be considered.

3) Model depth, Fig. 5 (c): We also see that the deeper
ResNet-50 instantiations achieve higher F1 scores than the
small ones for all combinations except the flow-based 2D
CNN. Note that the improvement due to model depth is
especially noticeable in the F1 score, and less so in UAR.

D. Why do frame features perform better?

To help explain why frames perform better as features for
this task, we took a closer look at some example model
predictions from the validation set. It appears that flows are
in general useful as features; however, the data shows that

(a) Cutting lasagne (b) Preparing intake

Ground truth Small 2D CNN (frames)
ResNet 2D CNN (frames)

Small 2D CNN (flow)
ResNet 2D CNN (flow)

Fig. 7. Example situations showing uncertainty of flow (motion) models
compared to frame (appearance) models. Section S1 of the supplementary
material provides a multi-frame version of this figure.

(a) Raised fork (b) Blowing nose

Ground truth Small 2D CNN (without)
ResNet 2D CNN (without)

Small 3D CNN (with)
ResNet 3D CNN (with)

Fig. 8. Example situations where models with temporal context are superior
to models without temporal context. Section S2 of the supplementary material
provides a multi-frame version of this figure.

in comparison to frame models, flow models are less certain
about their predictions. For example, Fig. 7 (a) shows how
during periods with no intake gestures, small movements such
as using cutlery can cause higher uncertainty in flow models.
On the other hand, Fig. 7 (b) shows how flow models are
also overall less confident when correctly identifying intake
gestures. This can also be observed by looking at aggregated
predictions for all events in Fig. 6: Models based solely
on flows (a) are less certain about predictions, while their
predictions also contain more variance than models based on
frames (b). Further, this is also reflected in the lower thresholds
required to trigger a detection for flow models, as is evident
from Table IV. These lower thresholds and uncertainty are
linked to the large number of false positives of these models.

E. Why do models with temporal context perform better?

Our results show that while models based on single frames
perform reasonably well, there is measurable improvement
when adding temporal context. Hence, we also looked at this
comparison for example model predictions from the validation
set to help make the difference easier interpretable. Indeed,
in some cases, it appears intuitive to a human observer
how the temporal context is helpful to interpret the target
frame. For example, in Fig. 8 (a), the participant keeps the
fork raised after completing an intake gesture. A frame by
itself can seem to be part of an intake gesture, while the
participant is actually resting this way or is being interrupted.
Without temporal context, the 2D CNN models are unaware
of this context, resulting in poor performance. Availability of
temporal context also helps models to become more confident
in their predictions. Further, errors due to outliers are more
easily avoidable with temporal context, such as blowing nose
in Fig. 8 (b). On the aggregate level, Fig. 6 illustrates how
predictions by models with temporal context (c)-(f) have a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) Eating bread crust (b) Licking finger

(c) Sipping water (d) Too hot

Ground truth ResNet 3D CNN ResNet CNN-LSTM ResNet SlowFast

Fig. 9. Example situations where the best models cause false negatives (a-b)
and false positives of type 1 (c) and type 2 (d). Note that a true positive
always preceeds false positives of type 1. Section S3 of the supplementary
material provides a multi-frame version of this figure.

more snug fit with the ground truth events, and less variance
in their predictions.

F. Where do the models struggle?

Examining the results in Table IV, it appears that mainly
false negatives and also false positives of type 2 are prob-
lematic for our best models. To help understand in what
circumstances the models struggle, we compiled examples
from the validation set where the best models make mistakes.
The examples show that these mistakes tend to happen in cases
of “outlier behavior” that differs substantially from the typical
behavior in the dataset. False negatives occur mostly for intake
gestures that are less noticeable or less common, such as eating
bread crust or licking a finger, see Fig. 9 (a) and (b). An
example for false positives of type 2 is when the participant
interrupts an intake gesture as depicted in Fig. 9 (d). We see
false positives of type 1 as mostly representing a shortcoming
of the Stage II approach, i.e., when the duration of an intake
gesture exceeds 2 seconds, seen in Fig. 9 (c).

VI. CONCLUSION

In this paper, we have demonstrated the feasibility of detect-
ing intake gestures from video sourced through a 360-degree
camera. Our two-stage approach involves learning frame-level
probabilities using deep architectures proposed in the context
of video action recognition (Stage I), and a search algorithm to
detect individual intake gestures (Stage II). Through evaluation
of a variety of models, our results show that appearance
features in form of the individual raw frames are well suited
for this task. Further, while single frames on their own can
lead to useful results with F1 of up to 0.795, the best model
considering a temporal context of multiple frames achieves a
superior F1 of 0.858. This result is achieved with a state-of-
the-art SlowFast network [16] using ResNet-50 as backbone.

Overall, we see several benefits and opportunities that the
use of video holds for dietary monitoring. First, the prolif-
eration of 360 degree video reduces the practical challenges
of recording images of human eating occasions. This could
be used to capture the intake of multiple individuals with

a single camera positioned in the center of a table (e.g.,
families eating from a shared dish [49]). Second, the models
could be leveraged to support dietitians in reviewing videos of
intake occasions. For instance, instead of watching a twenty
minute video, imagery of the actual intake gestures could
be automatically extracted for assessment. Third, the models
could be used to semi-automate the ground truth annotation
process (e.g., for inertial sensors) by pre-annotating the videos.
Finally, the models could be used to further the development
of fully automated dietary monitoring [7] (e.g., care-taking
robots, life-logging, patient monitoring).

As a limitation of our approach, we noted that the distribu-
tion of participant behavior has a “fat tail” as it includes many
examples of outlier behavior that models misinterpret (e.g.,
sudden interruption due to a conversation, blowing on food).
To deal with such events, future research may employ larger
databases of samples to train models. Further, in comparison
to approaches based on inertial sensors, our approach has a
limitation in that it requires the participant to consume their
meal at a table equipped with a camera. Hence, our vision
models should be directly benchmarked against models based
on inertial sensor data to determine their relative strengths and
weaknesses. Going one step further, fusion of both modalities
could also be explored. Finally, Stages I and II could be unified
into a single end-to-end learning model using CTC loss [50],
which may alleviate some of the shortcomings of the current
approach. However, it needs to be considered that (i) this
is directly only feasible for the CNN-LSTM model without
increasing the requirement for GPU memory, and (ii) a larger
temporal context and dataset may be required.

ACKNOWLEDGMENT

We gratefully acknowledge the support by the Bill &
Melinda Gates Foundation [OPP1171389]. This work was
additionally supported by an Australian Government Research
Training (RTP) Scholarship.

REFERENCES

[1] C. Weekes, A. Spiro, C. Baldwin, K. Whelan, J. Thomas, D. Parkin,
and P. Emery, “A review of the evidence for the impact of improving
nutritional care on nutritional and clinical outcomes and cost,” J. Human
Nutrition Dietetics, vol. 22, pp. 324–335, 2009.

[2] P. V. Rouast, M. T. P. Adam, T. Burrows, R. Chiong, and M. E. Rollo,
“Using deep learning and 360 video to detect eating behavior for user
assistance systems,” in Proc. Europ. Conf. Information Systems, 2018.

[3] WHO, “Noncommunicable diseases progress monitor, 2017,” Geneva:
World Health Organization, Tech. Rep., 2017.

[4] S. W. Lichtman, K. Pisarska, E. R. Berman, M. Pestone, H. Dowling,
E. Offenbacher, H. Weisel, S. Heshka, D. E. Matthews, and S. B. Heyms-
field, “Discrepancy between self-reported and actual caloric intake and
exercise in obese subjects,” New England J. Medicine, vol. 327, no. 27,
pp. 1893–1898, 1992.

[5] T. Vu, F. Lin, N. Alshurafa, and W. Xu, “Wearable food intake
monitoring technologies: A comprehensive review,” Computers, vol. 6,
no. 1, p. 4, 2017.

[6] K. Kyritsis, C. Diou, and A. Delopoulos, “Modeling wrist micromove-
ments to measure in-meal eating behavior from inertial sensor data,”
IEEE J. Biomedical and Health Informatics, 2019.

[7] S. Hantke, F. Weninger, R. Kurle, F. Ringeval, A. Batliner, A. E.-
D. Mousa, and B. Schuller, “I hear you eat and speak: Automatic
recognition of eating condition and food type, use-cases, and impact
on asr performance,” PloS one, vol. 11, no. 5, p. e0154486, 2016.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

[8] E. Thomaz, I. Essa, and G. D. Abowd, “A practical approach for
recognizing eating moments with wrist-mounted inertial sensing,” in
Proc. UbiComp. ACM, 2015, pp. 1029–1040.

[9] M. Mirtchouk, C. Merck, and S. Kleinberg, “Automated estimation of
food type and amount consumed from body-worn audio and motion
sensors,” in Proc. UbiComp, 2016, pp. 451–462.

[10] A. Braeken, P. Porambage, A. Gurtov, and M. Ylianttila, “Secure and
efficient reactive video surveillance for patient monitoring,” Sensors,
vol. 16, no. 1, pp. 1–13, 2016.

[11] A. Hall, C. B. Wilson, E. Stanmore, and C. Todd, “Implementing moni-
toring technologies in care homes for people with dementia: a qualitative
exploration using normalization process theory,” Int. J. Nursing Studies,
vol. 72, pp. 60–70, 2017.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[13] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, 2013.

[14] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proc. CVPR, 2015,
pp. 2625–2634.

[15] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Proc. NIPS, 2014, pp. 568–576.

[16] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for
video recognition,” arXiv preprint arXiv:1812.03982, 2018.

[17] G. Ciocca, P. Napoletano, and R. Schettini, “Learning cnn-based features
for retrieval of food images,” in Proc. Int. Conf. Image Analysis and
Processing, 2017, pp. 426–434.

[18] C. Feichtenhofer, A. Pinz, R. P. Wildes, and A. Zisserman, “What have
we learned from deep representations for action recognition?” in Proc.
CVPR, 2018, pp. 7844–7853.

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proc. CVPR, 2014, pp. 1725–1732.

[20] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in Proc. CVPR, 2017, pp. 4299–4308.

[21] G. Block, “A review of validations of dietary assessment methods,” Am.
J. Epidemiology, vol. 115, no. 4, pp. 492–505, 1982.

[22] J. Chen and C.-W. Ngo, “Deep-based ingredient recognition for cooking
recipe retrieval,” in Proc. Multimedia Conf., 2016, pp. 32–41.

[23] G. Ciocca, P. Napoletano, and R. Schettini, “Cnn-based features for
retrieval and classification of food images,” Comput. Vision Image
Understanding, vol. 176, pp. 70–77, 2018.

[24] M. Puri, Z. Zhu, Q. Yu, A. Divakaran, and H. Sawhney, “Recognition
and volume estimation of food intake using a mobile device,” in Proc.
Workshop on Applications of Computer Vision, 2009, pp. 1–8.

[25] W. Zhang, Q. Yu, B. Siddiquie, A. Divakaran, and H. Sawhney, ““snap-
n-eat” food recognition and nutrition estimation on a smartphone,” J.
Diabetes Science Technol., vol. 9, no. 3, pp. 525–533, 2015.

[26] Y. Dong, J. Scisco, M. Wilson, E. Muth, and A. Hoover, “Detecting
periods of eating during free-living by tracking wrist motion,” IEEE J.
Biomedical and Health Informatics, vol. 18, no. 4, pp. 1253–1260, 2014.

[27] X. Ye, G. Chen, Y. Gao, H. Wang, and Y. Cao, “Assisting food journaling
with automatic eating detection,” in Proc. CHI Conf. Extended Abstracts
on Human Factors in Computing Systems. ACM, 2016, pp. 3255–3262.

[28] E. Robinson, E. Almiron-Roig, F. Rutters, C. de Graaf, C. G. Forde,
C. Tudur Smith, S. J. Nolan, and S. A. Jebb, “A systematic review and
meta-analysis examining the effect of eating rate on energy intake and
hunger,” Am. J. Clinical Nutrition, vol. 100, no. 1, pp. 123–151, 2014.

[29] H. Heydarian, M. Adam, T. Burrows, C. Collins, and M. E. Rollo,
“Assessing eating behaviour using upper limb mounted motion sensors:
A systematic review,” Nutrients, vol. 11, no. 5, p. 1168, 2019.

[30] O. Amft, M. Stager, P. Lukowicz, and G. Troster, “Analysis of chewing
sounds for dietary monitoring,” in Proc. UbiComp, 2005, pp. 56–72.

[31] S. Päßler, M. Wolff, and W.-J. Fischer, “Food intake monitoring: an
acoustical approach to automated food intake activity detection and
classification of consumed food,” Physiological Measurement, vol. 33,
no. 6, pp. 1073–1093, 2012.

[32] E. S. Sazonov and J. M. Fontana, “A sensor system for automatic
detection of food intake through non-invasive monitoring of chewing,”
IEEE Sensors Journal, vol. 12, no. 5, pp. 1340–1348, 2012.

[33] O. Amft, H. Junker, and G. Troster, “Detection of eating and drinking
arm gestures using inertial body-worn sensors,” in Proc. Int. Symp.
Wearable Computers. IEEE, 2005, pp. 160–163.

[34] Y. Shen, J. Salley, E. Muth, and A. Hoover, “Assessing the accuracy of
a wrist motion tracking method for counting bites across demographic
and food variables,” IEEE J. Biomedical and Health Informatics, vol. 21,
no. 3, pp. 599–606, 2017.

[35] S. Zhang, W. Stogin, and N. Alshurafa, “I sense overeating: Motif-
based machine learning framework to detect overeating using wrist-worn
sensing,” Information Fusion, vol. 41, pp. 37–47, 2018.

[36] J. Gao, A. G. Hauptmann, A. Bharucha, and H. D. Wactlar, “Dining
activity analysis using a hidden markov model,” in Proc. Int. Conf.
Pattern Recognition. IEEE, 2004, pp. 915–918.

[37] K. Okamoto and K. Yanai, “Grillcam: A real-time eating action recogni-
tion system,” in Proc. Int. Conf. Multimedia Modeling. Springer, 2016,
pp. 331–335.

[38] H. M. Hondori, M. Khademi, and C. V. Lopes, “Monitoring intake
gestures using sensor fusion (microsoft kinect and inertial sensors) for
smart home tele-rehab setting,” in Proc. Healthcare Innovation Conf.,
2012, pp. 36–39.

[39] J. S. Tham, Y. C. Chang, and M. F. A. Fauzi, “Automatic identification
of drinking activities at home using depth data from rgb-d camera,” in
Proc. Int. Conf. Control, Automation and Information Sciences. IEEE,
2014, pp. 153–158.

[40] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor
based on 3d-gradients,” in Proc. BMVC, 2008, pp. 1–10.

[41] H. Wang, A. Kläser, C. Schmid, and L. Cheng-Lin, “Action recognition
by dense trajectories,” in Proc. CVPR, 2011, pp. 3169–3176.

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proc. ICCV,
2015, pp. 4489–4497.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[44] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proc. CVPR, 2016, pp.
1933–1941.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[46] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
tv-l1 optical flow,” in DAGM: Pattern Recognition, 2007, pp. 214–223.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012, pp.
1097–1105.

[48] C. Merck, C. Maher, M. Mirtchouk, M. Zheng, Y. Huang, and S. Klein-
berg, “Multimodality sensing for eating recognition,” in Proc. Int. Conf.
Pervasive Computing Technologies for Healthcare, 2016, pp. 130–137.

[49] T. Burrows, C. Collins, M. T. P. Adam, K. Duncanson, and M. Rollo,
“Dietary assessment of shared plate eating: A missing link,” Nutrients,
vol. 11, no. 4, pp. 1–14, 2019.

[50] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proc. ICML, 2006, pp. 369–376.

Philipp V. Rouast received the B.Sc. and M.Sc.
degrees in Industrial Engineering from Karlsruhe
Institute of Technology, Germany, in 2013 and
2016 respectively. He is currently working towards
the Ph.D. degree in Information Systems and is
a graduate research assistant at The University of
Newcastle, Australia. His research interests include
deep learning, affective computing, HCI, and re-
lated applications of computer vision. Find him at
https://www.rouast.com.

Marc T. P. Adam is a Senior Lecturer in Computing
and Information Technology at the University of
Newcastle, Australia. In his research, he investigates
the interplay of human users’ cognition and affect
in human-computer interaction. He is a founding
member of the Society for NeuroIS. He received an
undergraduate degree in Computer Science from the
University of Applied Sciences Würzburg, Germany,
and a PhD in Economics of Information Systems
from Karlsruhe Institute of Technology, Germany.

	anm7:
	7.39:
	7.38:
	7.37:
	7.36:
	7.35:
	7.34:
	7.33:
	7.32:
	7.31:
	7.30:
	7.29:
	7.28:
	7.27:
	7.26:
	7.25:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.49:
	6.48:
	6.47:
	6.46:
	6.45:
	6.44:
	6.43:
	6.42:
	6.41:
	6.40:
	6.39:
	6.38:
	6.37:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

