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ABSTRACT Automatic detection of intake gestures is a key element of automatic dietary monitoring.
Several types of sensors, including inertial measurement units (IMU) and video cameras, have been used
for this purpose. The common machine learning approaches make use of the labelled sensor data to
automatically learn how to make detections. One characteristic, especially for deep learning models, is the
need for large datasets. To meet this need, we collected the Objectively Recognizing Eating Behavior and
Associated Intake (OREBA) dataset. The OREBA dataset aims to provide a comprehensive multi-sensor
recording of communal intake occasions for researchers interested in automatic detection of intake gestures.
Two scenarios are included, with 100 participants for a discrete dish and 102 participants for a shared dish,
totalling 9069 intake gestures. Available sensor data consists of synchronized frontal video and IMU with
accelerometer and gyroscope for both hands. We report the details of data collection and annotation, as
well as technical details of sensor processing. The results of studies on IMU and video data involving deep

learning models are reported to provide a baseline for future research.

INDEX TERMS
gyroscope, 360-degree video camera

I. INTRODUCTION

RADITIONAL dietary assessment methods are reliant
Ton self-report data. While data captured with active
methods such as self-report and 24-hr recall are widely used
in practice, they are not without limitations (e.g., human
error, time-consuming manual process) [1]. Automatic di-
etary monitoring, where data is collected and processed in-
dependent of the individual, has the potential to complement
data from traditional methods and reduce associated biases
[2]. In addition, such systems have the potential to support
personal self-monitoring solutions by providing individuals
with targeted eating behaviour recommendations.

A key element of automatic dietary monitoring is the
detection of intake gestures (i.e., the process of moving food
or drink towards the mouth). Recent research on this task
focuses mainly on machine learning approaches which are
characterized by a need for large amounts of labeled data.
This is especially true in conjunction with deep learning,
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which has been applied in this context since 2017 [3]. How-
ever, collecting, synchronizing, and labeling data of eating
occasions is a work-intensive process. Hence, there is a need
for more public datasets to reduce barriers for researchers
to create new machine learning models, and to objectively
compare the performance of existing approaches [4], [5].

At the same time, current research on dietary monitoring
identified a gap in research on shared plate eating [6]. Com-
munal eating (i.e., eating occasions involving more than one
person) is not yet well understood, let alone the impact it has
on accuracy of automatic dietary monitoring. Hence, existing
research on capturing dietary intake from discrete dishes
needs to be complemented and contrasted with research on
the detection of intake from shared dishes.

In order to address these gaps, the present paper introduces
the Objectively Recognizing Eating Behavior and Associated
Intake (OREBA) dataset. OREBA was developed as part of a
research project investigating eating behavior and associated
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TABLE 1. Public datasets of intake gestures with synchronized sensor data and annotations available.

Synchronized sensors Ground | Participants Intake
Dataset Video Audio IMU Scale truth (Recordings)? events Annotations
ACE [7] - Babug  Pombands . Ve 1 a3 agy | Chews. swallows with type and amount
Clemson(81 | - IS 1SHr | e | 2SS 206k | el container and food,
I | 20007 | e e,
el R A Il S I o
okeansiun | Ggne s Cop TV | | Pk et

# One recordings equals one person consuming one meal.

b Used for ground truth annotation, but not available for download as of early 2020.

intake in communal eating across two scenarios (discrete dish
and shared dish). A total of 202 meal recordings were com-
pleted, with 180 unique individuals participating. The total
number of intake gestures across both recordings is 9069. A
single spherical video camera positioned in the center of the
table made it possible to capture the entire scene of up to four
participants. The video features the frontal perspective of
each participant, offering a full view of all relevant gestures.
The dataset includes synchronized frontal video and inertial
measurement unit (IMU) of both hands, along with labels for
each intake gesture. To our best knowledge, this is the first
dataset to make such data publicly available for communal
eating from both discrete and shared dishes.

In the following, Section II gives an overview of the related
work and existing datasets, Section III introduces the data
collection and annotation process of the OREBA dataset in
detail, Section IV provides results from our initial studies as
baselines, and we conclude with a discussion in Section V.

Il. RELATED WORK
A. AUTOMATIC DIETARY MONITORING

Automatic dietary monitoring encompasses three major
goals: (i) detecting the timing of intake events, (ii) recog-
nizing the type of food or drink, and (iii) estimating the
weight consumed. Detection of intake behavior, which is
associated with intake gestures, chews, and swallows, can be
considered as part of the first goal. Researchers have lever-
aged various different sensor types for this purpose. While
chews and swallows can be detected using audio signals
[10], intake gestures are typically handled using an IMU
including accelerometer and gyroscope sensors [11]. Before
the application of deep learning architectures, the traditional
approach in this field reduced the dimensionality of the raw
sensor data by extracting features handcrafted using expert
knowledge. Deep learning methods have been explored to
detect individual intake gestures with inertial sensor data
since 2017 [3], [12] and with video data since 2018 [2],
[4], [5], whereby large amounts of labelled examples are
leveraged to let algorithms learn the features automatically.

B. EXISTING DATASETS

To date, most published studies on recognition of intake
behaviour rely on dedicated, private datasets collected for
a specific purpose. Considering the shift towards adoption
of deep learning techniques, we expect an increasing need
for large, public datasets that existing and emerging machine
learning approaches can objectively be benchmarked on.
Similar developments can be observed across several related
fields such as action recognition [13], affect recognition [14],
and object recognition [15], [16].

Table 1 provides an overview of publicly available datasets
on intake gestures which feature synchronized sensor data of
eating occasions with labels for individual gestures (intake
gestures or other eating related gestures)'.

o The accelerometer and audio-based calorie estimation
(ACE) dataset® [7] contains seven participants with au-
dio and IMU data for both hands and the head. Annota-
tions of type and amount of food and drink are available
for chews and swallows.

e The Clemson Cafeteria dataset® [8] contains 264 par-
ticipants and 488 recordings. IMU data is available at
15 Hz for the dominant hand, along with scale measure-
ments for the tray. Each intake gesture is annotated with
hand, utensil, container, and food.

o The Food Intake Cycle (FIC) dataset* [9], which con-
sists of 12 participants and 21 recordings, includes
IMU data for the dominant hand. The focus is on the
micromovements during intake gestures.

While video is commonly used as ground truth, none of
the existing datasets currently include video data as part of
the synchronized sensor data for analysis. In terms of IMU
data and quantity of recorded intake events, we find that the
existing datasets are restricted either to data from only one
hand, a relatively low recording frequency (15 Hz), or few
participants. We aim to further the field by establishing the

A related dataset is iHEARu-EAT [17], however we did not include it
here since it does not focus on intake events.

2See http://www.skleinberg.org/data.html

3See http://cecas.clemson.edu/~ahoover/cafeteria/. Recordings with miss-
ing annotations are excluded here.

4See https://mug.ee.auth.gr/intake-cycle-detection/
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FIGURE 1. The spherical video is remapped to equirectangular representation, cropped, and reshaped to square shape.

FIGURE 2. Study setup for OREBA-SHA. One camera in the center of the
table, IMU on each wrist, and four scales.

OREBA dataset, which includes video and IMU from both
hands, at a quantity of intake events sufficient to train deep
learning models for both video and inertial modalities.

lll. THE OREBA DATASET

The OREBA dataset aims to provide a comprehensive multi-
sensor recording of communal intake occasions for re-
searchers interested in automatic detection of intake gestures
and other behaviours associated with intake (e.g., serving
food onto a plate). Available sensor data consists of synchro-
nized frontal video and accelerometer and gyroscope for both
hands in two different scenarios (i.e., discrete dish and shared
dish). IRB approval was given (H-2017- 0208), and the data
was recorded between Mar 2018 and Oct 2019.

A. SCENARIOS

The OREBA dataset consists of two separate communal
eating scenarios. In each scenario, groups of up to four
participants were simultaneously recorded consuming a meal
at a communal table:

1) OREBA-DIS: In the first scenario, foods were served
in discrete portions to each participant. The meal
consisted of lasagna (choice between vegetarian and
beef), bread, and yogurt. Additionally, there was water
available to drink, and butter to spread on the bread.
The study setup for OREBA-DIS is shown in Fig. 1.
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2) OREBA-SHA: In the second scenario, participants
consumed a communal dish of vegetable korma or
butter chicken with rice and mixed vegetables. Addi-
tionally, there was water available to drink. The study
setup for OREBA-SHA is shown in Fig. 2.

Lasagna and rice-based dishes were chosen since they are
amongst the most common dishes in similar studies [11].
All participants in each scenario are unique, however 22
participants participated in both scenarios.

B. SENSORS

For each group, video was recorded using a spherical camera
placed in the center of the shared table (360fly-4K>). This
allowed video recording to occur in a simultaneous and un-
obtrusive way for all participants engaging in the communal
eating occasion around the table. The sampling rates are 24
fps for OREBA-DIS, and 30 fps for OREBA-SHA. Each
participant wore two IMU units, one on each wrist (Movisens
Move 3+ ©). The IMU included an accelerometer and a
gyroscope with a sampling rate of 64 Hz. For OREBA-SHA,
four scales additionally recorded the weight of the communal
dishes (two rices dishes, one wet dish, one vegetable dish) at
1 Hz (Adam Equipment CBK 4).

C. SENSOR PROCESSING

1) Video

As shown in Fig. 1, we first mapped the spherical video
from the 360-degree camera to equirectangular represen-
tation’. Then, we separated the equirectangular represen-
tation into individual participant videos by cropping the
areas of interest. We further resized each participant video
to a square shape. The two spatial resolutions 140x140
(e.g., <id>_video_140p.mp4) and 250x250 pixels (e.g.,
<id>_video_250p.mp4) are included. All videos are en-
coded using the H.264 standard and stored in mp4 containers.

2) Inertial Measurement Unit
Raw accelerometer data is measured in g, while gyroscope
data is measured in deg/s. The OREBA dataset includes (i)

5See https://www.360fly.com/
6See https://www.movisens.com/en/products/activity-sensor-move-3/
7See https://github.com/prouast/equirectangular-remap
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FIGURE 3. The wrist-worn sensors with their internal coordinate frames.
Additionally, the direction of positive rotations are indicated for each axis.

raw sensor data without any processing for left and right hand
(e.g., <id>_inertial_raw.csv), and (ii) processed
sensor data for dominant and non-dominant eating hand (e.g.,
<id>_inertial_processed.csv). Processed data is
generated from the raw data according to the following steps:

1: Removal of gravity effect. The raw accelerometer read-
ing is subject to acceleration from participants’ wrist move-
ments as well as the earth’s gravitational field. We remove
this gravity effect by estimating sensor orientation using
sensor fusion with Madgwick’s filter [18], rotation of the ac-
celeration vector with the resulting quaternion, and deduction
of the gravity vector (see [3] for a similar approach).

2: Standardization. Each column (meaning each axis for
each modality and hand) is standardized by subtracting its
mean and dividing by its standard deviation (see [9] for a
similar approach). Processed data can hence be regarded as
unitless.

3: Transforming from left and right hand to dominant and
non-dominant hand. To achieve data uniformity, we report
hands in the processed data as dominant and non-dominant.
A similar approach was chosen for the FIC dataset [12].
All data reported as dominant hands correspond to right
hands, and non-dominant hands to left hands; for left-handed
participants data for both hands has been transformed to
achieve this. We can simulate a recording on the opposite
wrist (mirrored horizontally, e.g., transforming data from
left wrist as if it had been recorded on right wrist). Due
to the way the sensors are mounted on the wrist (see Fig.
3), the horizontal direction corresponds to the x axis. For
accelerometer data, we estimate mirroring by flipping the
sign of the x axis, and for gyroscope by flipping the signs
of the y and z axis. Further, we also flip the signs of the x and
y axis to compensate for the different sensor orientations on
the wrists, yielding transformation (1) for accelerometer and
(2) for gyroscope.

[a;ﬂa;va;] = [_(_ax)a_awaz] = [aza_ayaaz] (1

[g;’g;’g;} = [_gxa _(_gy)» _gz} = [_gmagyv _gz] )

TABLE 2. The labeling scheme.

Category | Possible values

Main Intake, Serve

Sub Intake-Eat, Intake-Drink,

Serve-Self, Serve-Other

Left, Right, Both

Fork, Spoon, Hand, Knife, Finger, Cup, Bottle

Hand
Utensil

Note that the mirroring technique propopsed here could
also be of use for data augmentation pipelines.

3) Synchronization

Ground truth for sensor synchronization was acquired by
asking participants to clap their hands before starting, and
after finishing their meal (see [3] for a similar approach).
The clapping creates a distinct signature in both the video
recording and the accelerometer. All sensors were trimmed
in time and synchronized for each participant based on these
two reference points.

4) Scales

The shared plate setting in OREBA-SHA included four scales
that measured the weight of the two rice dishes at two corners
of the table as well as the wet dish and the vegetable dish in
the centre of the table (see Figure 2). These scales recorded
the weight of the four dishes in grams at a sampling rate of 1
Hz. The scale recordings were time-synchronized by means
of a time-lapse camera and a 200g calibration weight. At
the start of the recording, a research assistant removed the
calibration weight from the scale. This was captured by the
scale recordings as well as the time-lapse camera. Further, the
time-lapse camera also captured the clapping at the start of
the recording. Based on this, each scale recording includes a
reference in seconds to the clapping at the start of a recording.
Further, the dataset provides a mapping of each participant
number to the closest rice dish.

D. ANNOTATION

All relevant gestures were labelled and cross-checked by two
independent annotators using ChronoViz 8. Each gesture is
defined by a start and an end timestamp:

o The start timestamp is the point where the final uninter-
rupted movement to execute the gesture starts;

« the end timestamp is the point when the participant has
finished returning their hand(s) from the movement or
started a different gesture.

Additionally, each gesture is assigned four labels accord-
ing to our labelling scheme as listed in Table 2. Besides
the Main identification as an Intake or Serve gesture, this
scheme allows to further specify a Sub category for each
gesture, as well as indicating the Hand and Utensil (e.g.,
<id>_annotations.csv).

The scheme is designed to be extendable with more cate-
gories in possible extensions of the dataset. The discrete dish

8See http://chronoviz.com
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FIGURE 4. Example of a labeled intake gesture with video, accelerometer, and gyroscope sensor data. For easier display, the video framerate has been reduced.

scenario OREBA-DIS includes Intake labels. Correspond-
ingly, the shared dish scenario OREBA-SHA includes both
Intake and Serve labels. Figure 4 depicts an example of a
labeled intake gesture and associated IMU sensor data.

E. SPLITS

For machine learning problems with time-intensive training
and evaluation, the best practice is to train, validate, and test
using three separate sets of data [19]. Models are trained
with the training set, hyperparameters are tuned using the
validation set, and reported results are based on the test set.
We choose a split of approximately 3:1:1, such that each
participant only appears in one of the three subsets; this
is to ensure that we are measuring the model’s ability to
generalise and avoid data leakage. The recommended split is
included in the dataset download. Table 3 summarises high-
level statistics on these splits.

F. DEMOGRAPHICS

Out of 180 participants in total, 161 agreed to complete a
demographics questionnaire. Across the dataset, 67% iden-
tified as male and 33% as female. The median age is 24,
with the minimum and maximum age being 18 and 54 years
respectively. Reported ethnicities in the dataset include White
Australian (52.2%), White other European (9.9%), Chinese
(8.7%), Other Asian (8.7%), Persian (5.6%), Arabic (3.1%),
White British (3.1%), African (2.5%), and South East Asian
(1.8%). About 10% reported being left-, and 90% right-
handed.

G. AVAILABILITY
The OREBA dataset is available on request to research
groups at academic institutions. Please visit http:/www.
newcastle.edu.au/oreba to download the data sharing agree-
ment and get access.
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FIGURE 5. The evaluation scheme (proposed by [9]; figure from [21]
extended here). (1) A true positive is the first detection within each ground
truth event; (2) False positives of type 1 are further detections within the same
ground truth event; (3) False positives of type 2 are detections outside ground
truth events; (4) False positives of type 3 are detections made for the wrong
class; (5) False negatives are non-detected ground truth events.

IV. BASELINE FOR INTAKE GESTURE DETECTION
Intake gesture detection refers to the task of detecting the
times of individual intake gestures from sensor data. Sim-
ilar to dataset papers in other areas [15] [20], we provide
baseline results for this task on OREBA-DIS and OREBA-
SHA. As baseline models, we use the ResNet-50 SlowFast
model from Rouast et al. [21] for video data and the CNN-
LSTM model from Heydarian et al. [22] for inertial data. To
ensure comparability with future studies, we use the publicly
available data splits introduced in Section III-E for training,
validation, and test; we additionally report details on the used
evaluation metric. Table 4 reports the test set results for the
aforementioned models.

A. EVALUATION SCHEME

We extend the evaluation scheme proposed by Kyritsis et
al. [9] as depicted in Fig. 5. The scheme uses the ground
truth to translate sparse detections into measurable metrics
for a given label category. As Rouast and Adam [21] re-
port, one correct detection per ground truth event counts
as a true positive (TP), while further detections within the
same ground truth event are false positives of type 1 (F'/P).
Detections outside ground truth events are false positives of
type 2 (F'P5) and non-detected ground truth events count as
false negatives (F'N). The scheme has been extended here to
support the multi-class case, where detections for a wrong

5
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TABLE 3. Summary statistics for our dataset and the training/validation/test spilit.

Training Validation Test Total
Scenario Type # Mean [s] Std [s] # Mean [s] Std [s] # Mean [s] Std [s] # Mean [s] Std [s]
OREBA-DIS Participants 61 804.98 238.64 | 20 793.14 254.36 19 875.77 217.40 100 816.07 237.47
Intake Gest. | 2907 2.36 1.04 943 2.24 0.98 940 2.29 1.01 4790 2.32 1.02
Participants 63 838.55 259.76 | 20 811.31 221.04 19 824.60 201.68 102 830.61 240.80
OREBA-SHA  Intake Gest. | 2574 2.44 1.16 896 2.23 1.17 809 2.24 1.02 4279 2.36 1.14
Serve Gest. 337 9.87 4.52 107 10.99 6.56 112 9.05 4.34 556 9.92 4.97
TABLE 4. Baseline test set results for intake gesture detection. On V. DISCUSSION

OREBA-DIS, the video model performs better than the inertial model, while

the opposite is true on OREBA-SHA. This indicates that the test set for

OREBA-DIS is more challenging for using inertial data, while the test set for

OREBA-SHA is more challenging for using video data.

Dataset Modality | Precision | Recall Fr
Video 0912 | 0.801 | 0.853

OREBA-DIS | 1 ial 0764 | 0793 | 0.778
Video 0782 | 0.834 | 0.808

OREBA-SHA | 1o rtial 0.800 | 0912 | 0.852

class are false positives of type 3. Based on the aggregate
counts, precision ( TP+FP1£};,P TFP; ), recall (%), and

Precision*Reca%l
the F score (2 * m) can be calculated.

B. INERTIAL SENSORS

Heydarian et al. [22] applied the two-stage approach pro-
posed by Kyritsis et al. [9] to the inertial data in OREBA-
DIS for detection of intake gestures. They ran multiple
experiments benchmarking different deep learning models
and pre-processing pipelines. The top model performance
was achieved by a CNN-LSTM with earliest fusion through
a dedicated CNN layer and target matching. Concerning
preprocessing, their results show that applying a consecutive
combination of mirroring, removing the gravity effect, and
standardization was beneficial for model performance, while
smoothing and downsampling had adverse effects.

From the results in Table 4, it appears that the test set for
OREBA-DIS (F; = 0.778) is more challenging for inertial
data than the test set for OREBA-SHA (F; = 0.852).

C. VIDEO

Rouast and Adam [21] applied several deep learning architec-
tures established in the literature on video action recognition
on the task of detecting intake gestures directly from the
video data in OREBA-DIS. The best test set result was
achieved using a SlowFast [23] network with ResNet-50
[24] as backbone. Further conclusions from the experiments
are that appearance features are more useful than motion
features, and that temporal context in form of multiple video
frames is essential for top model performance.

The results in Table 4 indicate that the test set for OREBA-

SHA (F; = 0.808) is more challenging when working with
video data than the test set for OREBA-DIS (£} = 0.853).

In this paper, we have introduced the OREBA dataset, which
provides a comprehensive multi-sensor recording with la-
beled gestures of communal intake occasions from discrete
and shared meals. Building on a summary of related work
on automatic dietary monitoring and an overview of existing
public datasets in the field, we provided details on the data
collection, sensor processing, and annotation methods em-
ployed in the creation of the OREBA dataset. Additionally,
we reported baseline results on the task of intake gesture
detection based on video and inertial sensor data.

Sensor-based, passive methods of dietary monitoring have
the potential of complementing existing active methods such
as food records and 24-hr recall. As seen in other fields
such as object recognition [15] and action recognition [13],
progress in the research of machine learning methods is
tightly linked to the availability and ongoing development of
datasets with labeled examples. In this light, we hope that the
OREBA dataset will be able to support future developments
in automatic dietary monitoring. Compared to existing public
datasets of labeled intake gestures, the OREBA dataset is
unique as it provides (i) synchronised frontal video data
based on spherical video recordings, (ii) inertial data from
both hands at 64 Hz, and (iii) a total amount of 202 recordings
in two different communal eating scenarios.

While we have reported results from our initial studies on
detecting intake gestures with either video or inertial sensor
data, there are also several other directions that research on
this dataset could go into. Sensor fusion of video and IMU
for detecting intake gestures could be explored to combine
the strengths of both approaches. Improvements could also
be made by using transfer learning between the two different
scenarios, allowing to contrast the difficulties of monitoring
discrete versus shared dishes. Thanks to the availability of
inertial data for both hands, studies could also explore how
much information is retained on the dominant versus the non-
dominant hand, which has implications for automatic dietary
monitoring using commercial smartwatches. Further, while
our initial studies focused on detecting individual intake ges-
tures, future studies could explore the other label categories
— for example, how well the video or inertial modalities
perform at distinguishing between different utensils. Finally,
sensor fusion of video and IMU is a further possibility
that could be explored in the future. As such, and beyond
researchers specifically interested in dietary monitoring, the
OREBA dataset could also be a valuable resource for re-
searchers interested in advancing machine learning models

VOLUME 4, 2016
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for sensor fusion more broadly.
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